

PROVINCIAL ENERGY PLAN FOR AGRICULTURE, FISHERIES AND LIVESTOCK (AFL) SECTORS IN THE NORTHERN PROVINCE

Under the Biogas, Biomass and Solar Trilateral Cooperation Project

November 2021

Prepared by **Eng. M. M. R. Padmasiri**

Prepared For
United Nations Development Programme (UNDP) in Sri Lanka

Acknowledgement

This Provincial Energy Plan for the Northern Province was prepared as an assignment under the Biogas, Biomass and Solar Trilateral Cooperation-Transitioning to Sustainable Energy Uses in the Agro-Industry for UNDP Sri Lanka. The project is supported by the Ministry of Commerce of China and Sustainable Energy Authority of Sri Lanka and implemented by UNDP Sri Lanka and UNDP China.

I wish to express my sincere thanks to UNDP Sri Lanka for the trust and confidence placed in me by entrusting this task and thereafter very enthusiastic encouragement, assistance and excellent cooperation extended by the Project Management Unit guided by Dr. Buddika Hapuarachchi - Policy Specialist and Team Leader, Climate and Environment Team and Ms. Sureka Perera - Programme Quality & Design Analyst and led by Mr. Sampath Ranasinghe (Programme Coordinator), Eng. Suranga Karavita (Technical Coordinator) and Mr. Dasitha Premarathne (Project Assistant) in performing this task.

On behalf of UNDP project Management unit, I highly value and appreciate the guidance and support given by the partners of the project, Professor Dong Renjie and Dr Zhou Yuguang Associate Professor of the Chinese Agricultural University, Officials of Administrative Centre for China's Agenda 21 (ACCA 21) and Regional Coordinator Dr. Denis Nkala and team of the UNOSCC for making this valuable exercise possible.

I also appreciate and highly value the guidance and support given the provincial council in preparing the provincial energy plan lead by the Chief Secretary Mr. S. M. Saman Bandulasena, Deputy Chief Secretary Planning Mr. R. Umakanthan, Secretary (Ministry of Agriculture) Mr. A. Sivabalasundran, Deputy Director Planning (Office of Deputy Chief Secretary Planning) Mr. K. K. Sivachandran, Provincial Director (Ministry of Agriculture) Mr. Sivakumar and all the other relevant staff members of respective ministries and departments of the province who supported.

Last but not least, I wish to express my sincere thanks and profound gratitude to all other parties without whose valuable contribution this report would not have been possible including district level officers, farmers and all others.

Eng M. M. R. Padmasiri

National Consultant Development of Energy Plans for the Agricultural Sector in Five Provinces Trilateral South-South Corporation (TSSC) Project UNDP Sri Lanka

CONTENTS	
LIST OF TABLES/ FIGURES	5
LIST OF ABBREVIATIONS	7
EXECUTIVE SUMMARY	8
CHAPTER 1:	10
INTRODUCTION	10
1.1 INTRODUCTION TO THE REPORT	10
1.2 BACKGROUND	10
1.3 AGRICULTURE SECTOR - NORTHERN PROVINCE	11
1.3.1 OVERVIEW 1.3.2 ENERGY USE	11 12
1.3.3 IMPLEMENTED AND ONGOING PROGRAMMES	12
1.3.3.1 Projects Implemented by the Ministry of Agriculture - NP	12
1.4 LIVESTOCK SECTOR	12
1.4.1 OVERVIEW	12
1.4.2 ENERGY USE	13
1.5 FISHERIES SECTOR	13
1.5.1 OVERVIEW	13
1.5.2 ENERGY USE 1.5.3 IMPLEMENTED AND ONGOING PROGRAMMES	14 14
1.6 ASSISTANCE FOR IMPLEMENTATION OF GREEN ENERGY IN THE NORTHERN PROVINCE 1.6.1 NAMA PROJECT	14 14
1.6.2 ELECTRICITY TARIFF FOR AGRICULTURE SECTOR	14
1.6.3 AGRICULTURE SECTOR MODERNIZATION PROJECT	15
1.7 BARRIERS TO IMPLEMENTATION	15
1.8 METHODOLOGY ADOPTED	16
CHAPTER 2:	18
GOVERNMENT POLICIES, DIRECTIVES AND COMMITMENT	18
2.1 INTRODUCTION	18
2.2 GOVERNMENT DIRECTIVES	18
2.3 ENERGY POLICY	18
2.4 NATIONALLY DETERMINED CONTRIBUTIONS (NDCs)	19
2.5 AGRICULTURE POLICY	19
CHAPTER 3:	21

DATA AND INFORMATION	21
3.1 INTRODUCTION	21
3.2 DATA AVAILABLE IN OPEN SOURCES	21
3.2.1 AGRICULTURE SECTOR	21
3.2.2 FISHERIES SECTOR	22
3.2.3 LIVESTOCK SECTOR	22
3.3 DATA COLLECTION THROUGH A QUESTIONNAIRE SURVEY	23
3.3.1 AGRICULTURE SECTOR	23
3.3.2 FISHERIES SECTOR	24
3.3.3 LIVESTOCK SECTOR	24
CHAPTER 4:	26
BASELINE ANALYSIS	26
4.1 INTRODUCTION	26
4.2 LIMITATION OF THIS ANALYSIS	26
4.3 FORECASTING	26
4.4 AGRICULTURE SECTOR	27
4.4.1 AVERAGE VALUES TAKEN FOR ESTABLISHING THE ENERGY USE	27
4.4.2 RESULTS	27
4.5 ENERGY BALANCE	29
4.5.1 SHARE OF ENERGY IN AGRICULTURE SECTOR	29
4.5.2 SHARE OF ENERGY IN PADDY PRODUCTION	30
4.5.3 SHARE OF ENERGY AND ENERGY COST IN VEGETABLE CULTIVATION	30
4.5.5 SHARE OF ENERGY AND ENERGY COST IN FRUITS CULTIVATION	31
4.5.6 THE ANALYSIS OF EMBEDDED ENERGY	31
4.6 FISHERIES SECTOR	32
4.6.1 RESULTS	32
4.7 LIVESTOCK SECTOR	32
4.7.1 RESULTS	32
CHAPTER 5:	33
ANALYSIS ON GREEN ENERGY POTENTIAL IN AGRO- INDUSTRY	33
5.1 INTRODUCTION	33
5.1.1 OFF-GRID RENEWABLE ENERGY APPLICATIONS	33
5.1.1.1 Solar Water Pumping 5.1.1.2 Other Solar Applications	33 33
5.1.1.3 Biomass Applications	33
5.1.1.4 Biogas for thermal applications	33 34
5.1.2 ON-GRID RENEWABLE ENERGY APPLICATIONS	34
5.1.1.1 Solar roof top systems	34
5.1.3 BIOMASS APPLICATIONS- SMALL SCALE POWER GENERATION	35

5.1.4 BIOGAS APPLICATIONS- POWER GENERATION 5.1.5 ENHANCEMENT OF ENERGY UTILIZATION EFFICIENCY	35 35
CHAPTER 6:	36
RECOMMENDATIONS	36
6.1 INTRODUCTION	36
6.2 POPULARIZATION OF TECHNICALLY AND COMMERCIALLY VIABLE TECHNOLOGIES	36
6.3 CROSS-SECTORAL RECOMMENDATIONS 6.3.1 INTRODUCTION OF SOFT LOAN FACILITIES 6.3.2 INTRODUCTION OF NEW TECHNOLOGIES 6.3.3 ENHANCEMENT OF KNOWLEDGE ON RENEWABLE ENERGY & ENERGY EFFICIENCY 6.3.4 DATA RECORDING AND INFORMATION SHARING 6.3.5 DEMONSTRATION SITES	36 36 37 37
6.4 RECOMMENDATIONS - AGRICULTURE SECTOR 6.4.1 EFFICIENCY ENHANCEMENT IN AGRICULTURE MACHINERIES	37 37
6.5 RECOMMENDATIONS - LIVESTOCK SECTOR 6.5.1 STUDY ON UTILIZATION OF BIOGAS UNITS 6.5.2 BIOMASS HOT WATER GENERATORS FOR CURD INDUSTRY 6.5.3 SMALL SCALE MILK CAN COOLERS FOR STORING MILK AT DOMESTIC LEVEL	38 38 39
6.6 RECOMMENDATIONS - FISHERIES SECTOR	39
CHAPTER 7:	40
ACTIVITY PLAN	40
7.1 INTRODUCTION	40
7.2 ACTIVITIES	40
CHAPTER 8:	59
IMPACT ASSESMENT OF PROPOSED ACTIONS	59
CHAPTER 9:	60
IMPLEMENTATION ARRANGEMENT OF THE ACTION PLAN	60
9.1 IMPLEMENTATION ARRANGEMENT OF THE GREEN ENERGY ACTION PLAN 9.1.1 GOVERNING FRAMEWORK 9.1.2 STEERING COMMITTEE FOR IMPLEMENTATION OF THE ACTION PLAN (SC) 9.1.3 FINANCIAL MANAGEMENT	60 60 61
REFERENCES	62
ANNEXURES	64
ANNEX 1: CONTACT DETAILS OF WORKING COMMITTEE- FOCAL POINTS (NP)	64

LIST OF TABLES/ FIGURES

Figure 1.1: Boundary of this analysis reprot	8
Figure 1.2: Electricity share by province	ç
Figure 1.3: Electricity share by different categories in NP	ç
Figure 1.4: Share of paddy cultivation area by province	ç
Table 1.1: Details of projects implemented in NP	10
Table 2.1: The strategies directly effecting agriculture sector under the energy policy	16
Table 2.2: The NDCs directly effecting to the agriculture sector	17
Table 2.3: Energy related policy actions in the National Agriculture Policy	17
Table 3.1: Land use, yield and details of machinery use in vegetable and other crop cultivation	19
Table 3.2: Land use, yield and details of machinery use in fruit cultivation	20
Table 3.3: Key statistics of the fisheries sector in the Northern Province	20
Table 3.4: Key statistics of the livestock sector in the Northern Province	20
Table 3.5: Number of Livestock Farmers - 2020	21
Table 3.6: Machinery usage in cultivation	21
Table 3.7: Energy and production data in the fisheries sector	22
Table 3.8: Details of milk cooling cans	22
Table 3.9: Details of processing centers in Northern Province	22
Table 3.10: Details of biogas units	23
Table 4.1: Energy use in paddy cultivation	25
Table 4.2: Energy use in vegetable cultivation	25
Table 4.3: Energy use in fruits cultivation	26
Figure 4.1: Share of energy by crop	27
Figure 4.2: Share of energy by process	27
Figure 4.3: Share of energy cost by process	27
Figure 4.4: Energy usage pattern in paddy production	28
Figure 4.5: Energy share by process	28
Figure 4.6: Energy cost share by process	28
Figure 4.7: Energy share by process	29
Figure 4.8: Energy cost share by process	29
Table 4.5: Energy usage in agriculture sector	29
Table 4.6: Energy usage in fisheries sector	30
Table 4.8: Energy generation in livestock sector	30

Table 5.1: Investment and payback period for solar rooftop systems	32
Table 6.1: Future potential technologies	37
Table 7.1: Recommended activities for the action plan	39
Figure 9.1: Implementation arrangement of the action plan	58

LIST OF ABBREVIATIONS

AFL Sector - Agriculture Fisheries and Livestock setor

CCS - Climate Change Secretariat

CEB - Ceylon Electricity Board

DIM - Direct Implementation Modality

GHG - Green House Gas

NAMA - Nationally Appropriate Mitigation Actions

NP - Northern Province

RETs - Renewable Energy Technologies

SLSEA - Sri Lanka Sustainable Energy Authority

TSSC Project - Trilateral South South Corporation Project

UNDP - United Nations Development Programme

EXECUTIVE SUMMARY

Energy and agriculture sectors are the largest Green-House Gas (GHG) emitters in Sri Lanka, representing around 59%, and 27% respectively of the total national GHG emissions (SNC, 2011). Thus, implementing energy efficiency measures and renewable energy technologies (RETs) in these sectors can have a significant impact in terms of emission reductions apart from significant socio-economic benefits to the country. However, the energy use and the energy generation (eg. Biogas) in agriculture, fisheries and livestock practices are not separately accounted in national or provincial level energy balances yet. The main reason may be the practical difficulties of collection of reliable and accurate data from the fields due to decentralized and scattered nature of operation. This report has been developed under the Biogas, Biomass and Solar Trilateral South South Cooperation (TSCC) Project which has been implemented with the objectives of introducing technologies and systems to enhance the Sustainable Energy Use in the Agriculture, Fisheries and Livestock (AFL) sector in Sri Lanka. Production and semi production process of the above mentioned sectors have been considered as the boundary of this analysis and technically viable renewable energy technologies have been analyzed and included in this action plan.

Agriculture Sector: There are about 317,300 hectares of agricultural land in Northern Province, and out of this about 181,400 hectares are paddy lands, 12,250 ha are vegetable cultivating lands, around 5,440 ha are fruit cultivating lands and around 26,200 ha are coconut lands [6].

Out of the total agricultural land in Northern Province, around 57% are paddy lands. Both rain fed and irrigated cultivation systems are followed in paddy cultivation in Northern Province and the yield is considerably higher in 'Maha' season. Low head lift irrigation systems are available in most of the areas in Northern Province for supplying water and agriculture dug wells are available in some of the areas. Even though there are multiple crop seasons practicing short rotation vegetables cultivation in other provinces in Sri Lanka, cultivations are mainly done during two major seasons in Northern Province.

Around 110.9 million liters of auto diesel, 60.8 million liters of petrol (Octane 92) and 419 GWh of electricity was used in 2019 [9] in Eastern Province. Out of these around 16.0% of diesel, 3.6% of petrol and 0.63% of electricity is used in agriculture sector.

The energy consumption in paddy cultivation is the highest in Eastern Province and rest of the energy is shared among vegetable and fruits cultivation. Out of the total energy consumption in agriculture sector (cultivation) land preparation and harvesting consume 50% and 22% respectively. Water pumping is the next and it shares around 17.5% of the total energy. In short rotation vegetable crops, more than 68% of total energy consumption shares are for water pumping and approximately 23% for land preparation.

Fisheries Sector: Production and semi production processes in marine fishing, inland fishing, ornamental fishing and shrimp farming are considered as the boundary of this report under fisheries sector. There are no field level fish storage facilities in the Eastern Province and all the stocks are sent to the processing centers just after harvesting.

Marine fishing is carried out in four Districts in Northern Province except Vauniya District. The total annual marine fish production is in the range of 80,000 to 86,000 tons per annum and this shares approximately 20.7% of the national marine fish requirement [8].

Inland fishing is also popular in the Northern Province and it contributes to supplying around 4.4% of the inland fish requirement of the country amounting 4,000 tons per annum [8].

There are 148 multiday boats registered in Northern Province but they are not practicing in deep sea fishing.

Out of the total energy use in Eastern province, around 0.77% of diesel consume in multi day boats. The total kerosene and petrol use in eastern province is around 22 million liters annually and this represent 36.1% of the total petrol use in Northern Province.

Livestock Sector: Livestock sector productions and earnings in the Northern Province is contributing substantially to the national GDP in Sri Lanka annually. Out of the total national requirement, about 11.0% of cow milk, 2.7% of buffalo milk, 13.7% of beef and 28.2% of mutton is produced in the Northern Province [7]. Northern Province is the second largest beef and mutton producer to the local consumption.

Cow milk industry is one of the major domestic industry coming under livestock sector in Northern Province. There are 48,800 cattle farmers in Northern Province and their major income generation mode is selling milk. In most of the areas milk is collected in the morning and no evening milking due to lack of storage facility.

Energy use in livestock sector is not significant and most of the activities are carrying out as a domestic industry.

Action Plan: This report presents a comprehensive activity plan to optimize the energy use in the Agro-Industry including agriculture, fisheries, and livestock sectors. The activity plan introduces 8 sector specific and cross sectoral interventions diverging in to 18 sub activities covering all major aspects including training and capacity building, renewable energy technology development, and financial mechanisms.

The energy share for land vehicles (land preparation and harvesting activities) in agriculture sector has been identified as the major contributor in the energy balance. Enhancement of energy efficiency in these machineries have been identified as one of the important activity but this has to be done in national level. Setting standards and quality control measures on machinery imports is more appropriate, as it will gradually lead efficient equipment to penetrate in to the market. Regulatory provisions are already available in section 35(2) and 36(2) of Sri Lanka Sustainable Energy Authority act no 35, 2007 for this purpose.

NDC Actions: Government of Sri Lanka submitted updated nationally determined contributions (NDCs) in July 2021 and it is expected to achieve a reduction of GHG emissions against the BAU scenario by 7% in the agriculture and livestock sectors (4% unconditionally and 3% conditionally) equivalent to an estimated mitigation level of 2,477,400 MT CO2e unconditionally and 1,858,000 MT CO2e conditionally (total of 4,335,400 MT CO2e) of carbon dioxide equivalent during the period of 2021 to 2030 by implementing the updated NDCs. Energy related sub NDC actions in agriculture and livestock sectors have been identified under this NDC submission and implementation of this action plan will give an additional support when reporting the achievements of the above targets.

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION TO THE REPORT

This report has been developed under the Biogas, Biomass and Solar Trilateral South South Cooperation (TSCC) Project which has been implemented with the objectives of introducing technologies and systems to enhance the Sustainable Energy Use in the Agriculture, Fisheries and Livestock (AFL) sector in Sri Lanka. This is a 2-year project and the Sri Lanka Sustainable Energy Authority (SLSEA), Ministry of Power and Energy, and the Provincial Councils (Five Provinces-North Western, Southern, Uva, Eastern and Northern) are the project implementing partners whereas UNDP Sri Lanka provides the implementation support through Direct Implementation Modality (DIM).

Agriculture, fisheries and livestock (AFL) sectors have been considered under this report as the Agro-Industry prevailing in the Northern Province. Production and semi production process of the above mentioned sectors have been considered as the boundary of this analysis and technically viable renewable energy technologies have been analyzed and included in this action plan.

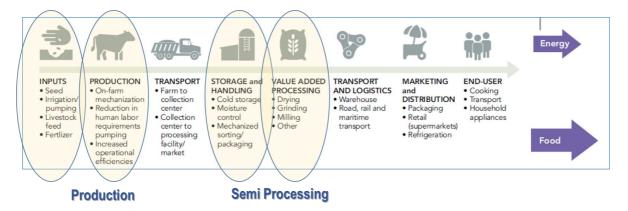
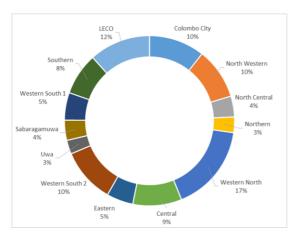



Figure 1.1: Boundary of this analysis reprot

Exceptions: Plantation sector (Tea, rubber, coconut, cashew etc.) and industry sector (Ice making etc.) are not covered under this analysis since these sectors have been addressed under other sectors.

1.2 BACKGROUND

Energy and agriculture sectors are the largest Green-House Gas (GHG) emitters in Sri Lanka, representing around 59%, and 27% respectively of the total national GHG emissions (SNC, 2011). Thus, implementing energy efficiency measures and renewable energy technologies (RETs) in these sectors can have a significant impact in terms of emission reductions apart from significant socio-economic benefits to the country. However, the energy use and the energy generation (eg. Biogas) in agriculture, fisheries and livestock practices are not separately accounted in national or provincial level energy balances yet. The main reason may be the practical difficulties of collection of reliable and accurate data from the fields due to decentralized and scattered nature of operation.

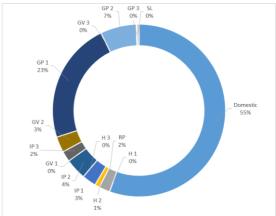


Fig 1.2: Electricity share by province

Fig 1.3: Electricity share by different categories in NP

Government of Sri Lanka submitted updated nationally determined contributions (NDCs) in July 2021 and it is expected to achieve a reduction of GHG emissions against the BAU scenario by 7% in the agriculture and the livestock sectors (4% unconditionally and 3% conditionally) equivalent to an estimated mitigation level of 2,477,400 MT CO_{2e} unconditionally and 1,858,000 MT CO_{2e} conditionally (total of 4,335,400 MT CO_{2e}) of carbon dioxide equivalent during the period of 2021 to 2030 by implementing the updated NDCs [2]. Adoption of renewable energy technologies in crop farming, livestock applications have been identified as prospective NDCs under this report.

1.3 AGRICULTURE SECTOR - NORTHERN PROVINCE

1.3.1 OVERVIEW

The energy use in crop cultivation and semi processing such as threshing & winnowing have been considered as the boundary of this analysis. There are about 317,300 hectares of agricultural land in Northern Province, and out of this about 181,400 hectares are paddy lands, 12,250 ha are vegetable cultivating lands, around 5,440 ha are fruit cultivating lands and around 26,200 ha are coconut lands [6].

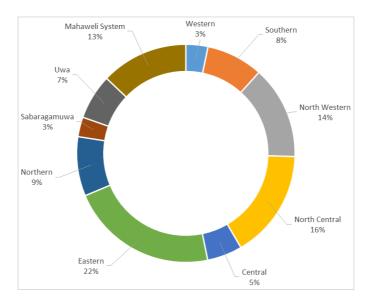


Fig 1.4: Share of paddy cultivation area by province

Out of the total agricultural land in Northern Province, around 57% are paddy lands. Both rain fed and irrigated cultivation systems are followed in most of the areas in Northern Province and the yield is considerably higher in 'Maha' season. Low head lift irrigation systems are available in most of the areas in Northern Province for supplying water and agriculture dug wells are available in some of the areas. Even though there are multiple crop seasons practicing short rotation vegetables cultivation in other provinces in Sri Lanka, cultivations are mainly done during two major seasons in Northern Province.

1.3.2 ENERGY USE

Water pumping is the major energy consumer in vegetable cultivation and approximately 64% in terms of energy, and 57% in terms of cost of energy shares are held in water pumping. Next to water pumping, energy requirement for land preparation holds the other major share. Energy consuming machineries such as sprayers, mini tillers etc. are used in agriculture industry but the energy or energy cost share is negligible. The detailed analysis of energy use is given in Chapter 4.

1.3.3 IMPLEMENTED AND ONGOING PROGRAMMES

1.3.3.1 Projects Implemented by the Ministry of Agriculture - NP

Ministry of Agriculture in Northern Province is providing agriculture machineries to the farmers at 50% or 100% grant basis annually and the summary of the projects implemented are given in the following table.

Projects Details (Related to Energy) NP - Agriculture

Year Project No of Beneficiaries Specifications LKR

2021

Details to be completed by the Ministry of Agriculture - NP

2020

Details to be completed by the Ministry of Agriculture - NP

Table 1.1: Details of projects implemented in NP

1.4 LIVESTOCK SECTOR

1.4.1 OVERVIEW

Livestock sector productions and earnings in the Northern Province is contributing substantially to the national GDP in Sri Lanka annually. Out of the total national requirement, about 11.0% of cow milk, 2.7% of buffalo milk, 13.7% of beef and 28.2% of mutton is produced in the Northern Province [7]. Northern Province is the second largest beef and mutton producer to the local consumption.

Cow milk industry is one of the major domestic industry coming under livestock sector in Northern Province. There are 48,800 cattle farmers in Northern Province and their major income generation mode is selling milk. In most of the areas milk is collected in the morning and no evening milking due to lack of storage facility.

Mannar District: Daily milk collection is around 5,000 liters and no evening milking in Mannar District. There are few milk collecting centers established by Milco and Nestle industries and the milk is taken daily to their processing centers.

Kilinochchi District: Daily milk collection in Kilinochchi District is around 10,000 to 12,000 liters and similar to Mannar District, all the milk is taken by Milco and Nestle industries for their processing plants.

Mullathivu District: Cattle are managed extensively and collect the milk around 15,000 liters per day and all the milk is taken by Milco and Nestle industries.

Vavuniya District: There are around 98,000 cattle in Vavuniya District and are managed extensively. The daily milk collection is around 35,000 liters and similar to other Districts, most of the milk is taken by Milko and Nestle industries.

Jaffna District: The highest milk collection in Northern Province is recorded in Jaffna District and collection is around 50,000 liters per day. Out of this around 16,000 liters are taken by Nestle industries and around 10,000 liters are taken by Milco industries. Balance is processed by Jaffna District Development Corporative Society (JDDCS) at their processing plant and ghee, curd, milk bottles, yogurt and ice cream are produced. There are 16 milk collecting centers and 10 selling points under JDDCS.

1.4.2 ENERGY USE

Electricity and LPG is used in milk processing centers at Jaffna and renewable energy options can be considered mainly for all these requirements.

In addition to the energy usage, substantial amount of energy is generated through biogas for domestic usage in this sector. Use of evaporative cooling technology in broiler chicken industry and use of coolers for preserving milk are the major energy utilizers in livestock sector. Apart from this this, water is being used in different stages in all the meat and egg production processes and there is not much detail recorded on that.

Milk is not taken in the evenings due to lack of preserving facilities and small-scale milk can coolers are very much essential to enhance the milk yield in Northern Province. In addition to this, proper system for pumping water has been identified as an urgent requirement. In some areas, elephant fences are required to get protection from the elephants.

1.5 FISHERIES SECTOR

1.5.1 OVERVIEW

Production and semi production processes in marine fishing, inland fishing and ornamental fishing are considered as the boundary of this report under fisheries sector. There are no field level fish storage facilities in the Northern Province and all the stocks are sent to the processing centers just after harvesting.

Marine fishing is carried out in four Districts in Northern Province except Vauniya District. The total annual marine fish production is in the range of 80,000 to 86,000 tons per annum and this shares approximately 20.7% of the national marine fish requirement [8].

Inland fishing is also popular in the Northern Province and it contributes to supplying around 4.4% of the inland fish requirement of the country amounting 4,000 tons per annum [8].

There are 148 multiday boats registered in Northern Province but they are not practicing deep sea fishing.

1.5.2 ENERGY USE

Fuel use in single day boats and electricity usage in ice production process are the major energy utilizing areas in fisheries sector.

1.5.3 IMPLEMENTED AND ONGOING PROGRAMMES

There are no significant energy related projects that have been implemented in the Northern Province during recent past. Street light project has been implemented in a few small harbors but most of such lanterns are not operating now, may be due to damage or sometimes thefts.

1.6 ASSISTANCE FOR IMPLEMENTATION OF GREEN ENERGY IN THE NORTHERN PROVINCE

1.6.1 NAMA PROJECT

Nationally Appropriate Mitigation Actions (NAMA) in the Energy Generation and End-use Sectors in Sri Lanka Project was executed by the United Nations Development Programme (UNDP), Sri Lanka Sustainable Energy Authority (SLSEA), and the Climate Change Secretariat of Sri Lanka (CCS) to support appropriate climate change mitigation actions in the energy generation and end-use sectors as part of the initiatives to achieve the voluntary GHG mitigation targets of Sri Lanka and to develop a robust, transparent and functional NAMA framework along with clear inventory and Monitoring, Reporting, and Verification (MRV) system with supporting governance and oversight in Sri Lanka that will systematically quantify Green House Gas (GHG) savings and benefits of the mitigation interventions using a bottom up approach to aggregate from the provincial and sub-sector levels to the national and sectors level.

As a continuation of the NAMA project, Trilateral South South Cooperation (TSSC) project has been initiated and it is being planned to implement up scalable technologies in Agriculture fisheries and livestock sectors in Northern Province as pilots.

1.6.2 ELECTRICITY TARIFF FOR AGRICULTURE SECTOR

Agriculture, fisheries, and livestock sectors have been included in to industry category under the CEB tariff structure and separate tariff has been announced by the Government of Sri Lanka on $06^{\rm th}$ March 2015 but it has been noticed that no one is aware about this initiative. The electricity bill can be brought down with this new tariff structure.

The Gazette of the Democratic Socialist Republic of Sri Lanka

EXTRAORDINARY

අංක 1904/58 - 2015 මාර්තු මස 06 වැනි සිකුරාදා - 2015.03.06 No.1904/58 - FRIDAY, MARCH 06, 2015

(Published by Authority)

PART I : SECTION (I) — GENERAL

Government Notifications

SRI LANKA ELECTRICITY ACT, No. 20 OF 2009

Publication under Sub - section (2) of the Section 30

AS per the Cabinet decision (ref: 35/2014/PE) dated 12.11.2014 and by virtue of the powers vested under Sub - Section (2) of the Section 30 of the Sri Lanka Electricity Act, No. 20 of 2009 (as amended), the Public Utilities Commission of Sri Lanka does hereby amend the definition for consumers of electricity to be qualified under the 'Industry' category as "Supply of electricity to be used for 'Agriculture', 'Forestry and Fishing', 'Mining and Quarrying', 'Manufacturing', 'Electricity, Gas, Steam and Air Conditioning Supply', 'Water Supply; Sewerage, Waste Management and Remediation Activities' morefully described under the relevant sections of the detailed classification published in schedule hereunto."

The previous 'Industry' category definition published under section 9 of 'Decision on Electricity Tariffs 2013', June 2013 is hereby revoked.

Chairman, Public Utilities Commission of Sri Lanka.

Level 06, Bank of Ceylon Merchant Tower, No. 28, St. Michael's Road, Colombo 03.

1.6.3 AGRICULTURE SECTOR MODERNIZATION PROJECT

Agriculture Sector Modernization Project has been initiated with the assistance of the World Bank and the objective is to support increasing agriculture productivity, improving market access, and enhancing value addition of smallholder farmers and agribusinesses in the project areas. More specifically seeks to promote commercial and export-oriented agriculture; attract and leverage investments from farmer producer organizations and agribusinesses for high value agriculture production and value addition; and provide the enabling environment, incentives, and access to finance for such investments through matching grants, technical assistance support, linkages to the commercial banking sector, and a Partial Credit Guarantee (PCG) facility. Also, the project is aiming enhancement of productivity through supporting smallholder farmers to produce competitive and marketable commodities, improve their ability to respond to market requirements, and move towards increased commercialization.

1.7 BARRIERS TO IMPLEMENTATION

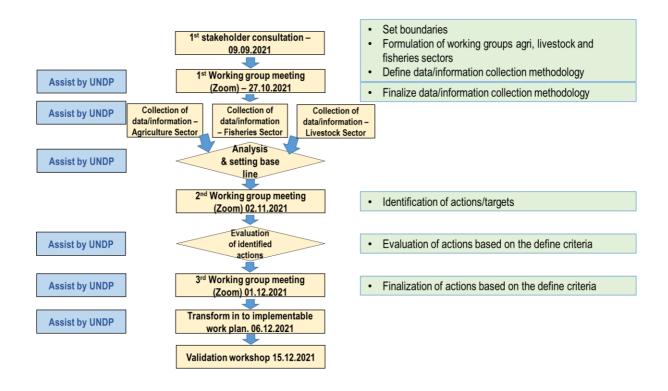
The energy usage in the AFL sector has not been properly accounted in national or regional level energy balance sheets and due to this less attention has been paid on implementation of energy efficiency or renewable energy projects in these sectors. To overcome this issue a separate chapter is recommended in the national energy balance published by Sri Lanka Sustainable Energy Authority.

Lack of end user awareness, lack of technical capacity among end users and officials in the AFL sectors on renewable energy and energy efficiency technologies are some of other challenges faced when implementing energy projects. Comprehensive training and capacity

building programmes are essential to overcome these issues. Also, demonstration of new technologies and systems through pilot projects can overcome most of these issues.

Even though the regulatory mechanisms are in place to eliminate the low-quality solar energy powered products coming in to the local market, low-quality products are still available and it is very difficult to recognize the best product by visual inspection. With this situation, the level of confidence about these appliances among the farmer community is decreasing day by day.

Lack of consistent market and price structure for agriculture products is another barrier to developing agriculture sector as expected. Due to weather conditions or seasonal variation, crop prices are varying rapidly in Sri Lanka and it is difficult to predict the market. With this background farmers are reluctant to invest as such for system developments.


It is obvious that the general public is always trying to move towards convenient lifestyles and they are not paying much attention on complex operations like domestic biogas systems even though it gives better return on investment (RoI). This is why the solar systems are becoming popular even with high initial cost. Once a solar system is installed on the roof top, there is not much operation and maintenance involvement except for cleaning the panel when required. When introducing a technology or a system, it is needed to take in to account these social aspects, otherwise the entire project will fail.

Agro-industry is one of the major income-generating industries in Sri Lanka and with high return on investment (RoI) in most of the commercially viable technologies. With this background it seems that the financial assistance is not required for commercialization of these technologies. However, if it is possible to develop and introduce most of the interventions as projects packaging essential elements together (soft financing, technology demonstration, pilot projects, awareness programmes and monitoring) the rate of implementation can be enhanced.

1.8 METHODOLOGY ADOPTED

Since the energy usage details in most of the ground work operations in the AFL sector is not readily available, more effort has been given to establish those details. Some of the required details have been taken from the information available in open sources mainly in web sites of ministries and departments and other ground information was collected conducting a questionnaire survey. The reference of web sites from which details were taken are given in the reference section and the details of interviewed farmers and other officials are given in the annex.

The steps followed for development of this action plan are presented in the following diagram and most of the group meetings were conducted online due to prevailing pandemic situation.

CHAPTER 2: GOVERNMENT POLICIES, DIRECTIVES AND COMMITMENT

2.1 INTRODUCTION

The energy aspect in the Agro-industry covered by different policies, directives and commitments is discussed in this chapter. These policy directives have been accounted when developing the prospective actions under this energy plan.

2.2 GOVERNMENT DIRECTIVES

The present Government has given a directive to agriculture sector to eliminate the use of chemical fertilizer with immediate effect and introduce/promote organic fertilizer to all crops. Under this directive in-house organic fertilizer manufacturing will be promoted and the machinery and energy requirement will be enhanced.

In addition to the policy directives given in the national energy policy document, present Government has given a directive to enhance the percentage of renewable energy in energy generation mix up to 70% by 2030.

2.3 ENERGY POLICY

The latest version of energy policy has been published on 09th Friday 2019 by the Ministry of Power & Energy. Working through the conflicting demands from the security, equity and sustainability dimensions, known as the energy trilemma, Sri Lanka today is seen to be moving away from the delicate balance of these three forces. The national energy policy is thus founded on ten pillars, rooted in the broad areas impacting the society, economy and the environment, in an effort to counter balance the forces through enhanced equity, security and sustainability, respectively. The strategies directly effecting to the agriculture sector are given in the following table.

Table 2.1: The strategies directly effecting agriculture sector under the energy policy

No.	Pillar	Strategy
01	Providing	New productive uses for electricity in agriculture, rural and primary
	Access to	industries will be encouraged with emphasis on empowerment of women
	Energy	and youth
	Services	To encourage prospective small and medium scale industries and
		businesses, the initial cost of obtaining an electricity connection, which may
		be considerable at present compared with the capital cost of the business,
		will be reduced by offering a special concessionary package under which the
		entire cost of the transformer for contract demands up to 100kVA will be
		waived-off and be socialized through distribution tariffs. This should be
		fully implemented from January-2021by CEB/LECO, accompanied with an
		appropriate campaign giving wide publicity through media.
02	Improving	Expert energy advisory services will be offered through state and private
	Energy	sector service providers to promote energy efficiency, conservation and
	Efficiency and	energy cost reduction across all end use sectors.
	Conservation	

2.4 NATIONALLY DETERMINED CONTRIBUTIONS (NDCs)

Government of Sri Lanka submitted updated nationally determined contributions (NDCs) in July 2021 and it is expected to achieve a reduction of GHG emissions against the BAU scenario by 7% in the agriculture and livestock sectors (4% unconditionally and 3% conditionally) equivalent to an estimated mitigation level of 2,477,400 MT CO2e unconditionally and 1,858,000 MT CO2e conditionally (total of 4,335,400 MT CO2e) of carbon dioxide equivalent during the period of 2021 to 2030 by implementing the updated NDCs [2]. The energy related NDCs identified in this document is given following table.

Table 2.2: The NDCs directly effecting to the agriculture sector

NDC No.	NDC and Action
NDC 03	Improve adoption of renewable energy for crop farming/value addition
	3.1 Application of solar PV and wind energy (or hybrid) for agriculture practices
	3.2 Promote grid electricity use in place of fossil fuel driven engine powered pumps
	3.3 Renewable energy powered mini grid for clustered agriculture farming in vulnerable
	areas (as a pilot)
	3.4 Explore and develop small hydro power potential in irrigation water canals for
	agriculture purpose
NDC 06	Adopt renewable energy for livestock applications
	E.g. small-scale solar-powered refrigeration to increase the milk storage facilities, solar-
	powered can-coolers for milk producers, solar energy for milk collection, chilling centers,
	farm operation and processing; and introducing biogas digesters for large scale livestock
	& poultry, dairy processing and abattoirs

2.5 AGRICULTURE POLICY

The Government has unveiled the drafted National Agriculture Policy towards achieving the vision of "sustainable food security to achieve national prosperity. The policy is primarily focused on food and feed crops, and sustainable food security with improved food quality and has set multiple goals to be achieved by 2030. The drafted policy has identified fifteen policy statements under ten thematic areas and 144 policy actions. Out of these the energy related policy actions are given in the following table.

Table 2.3: Energy related policy actions in the National Agriculture Policy

No.	Thematic Area	Policy Statement	Policy Action
01	Eco-friendly Operations	Support sustainability in agriculture development through conservation and	Take appropriate measures to increase the use of renewable energy in agriculture – e.g. financial incentives to access solar-energy and wind powered technology/ battery-powered technology for irrigation, cold-storage systems and use of biogas
02		utilization of natural resources while safeguarding ecosystem services	Introduce and adopt eco-friendly agricultural practices across agro-ecosystems to support environmental conservation
03	Input Management	Strengthen delivery	Establish a mechanism to certify machinery
		and management	and other agricultural inputs to be used in Sri

		operations of	Lanka (e.g. a central regulatory entity for
		physical inputs for	auricular inputs)
			adricular inputs)
		their judicious use	
04		Enhance rational use	Take appropriate regulatory measures to avoid
		of irrigation water	excessive use of ground water
		through	
		participatory	
		management to	
		improve the	
		irrigation water use	
		efficiency	
05		Encourage	Provide financial and institutional support to
03		development and	develop cost-effective technology using locally-
		adoption of	available resources
06		appropriate	Promote adoption of technologies targeting
		innovations and	value addition for perishables
07		technologies during	Strengthen technology transfer mechanisms
08		pre- and post-	Revisit and restructure existing authoritative
		harvest management	body responsible for agriculture research to
		for sustainable	focus on establishing an Agriculture Research
		agricultural	and Development/Extension Council
09		production	Introduction of proven and appropriate
00		•	technology in to the sector through field
			validation
10	A:	Streamline and	
10	Agri-		Adopt warehouse receipting system for durables
	Entrepreneurship	explore the	(e.g. grain crops) by encouraging PPP,
	and Markets	domestic and	establishment of databases, etc.
11		international market	Establish cold storage and cold chain facilities
		systems with	for perishables through PPP
		appropriate logistic	
		services in	
		compliance with	
		national and	
		international	
		standards	
12	Knowledge	Constitute a	Provide appropriate incentives (financial &
	Management and	centrally-controlled	physical) to promote R&D for technology
	Agricultural	information	development
	Extension	development and	development
	FYICHSIOH	dissemination	
		system to manage	
		research,	
		development and	
		extension systems,	
		and recruitment	
		related to the	
		agriculture sector	

CHAPTER 3: DATA AND INFORMATION

3.1 INTRODUCTION

Data and information related to energy and machinery use in the AFL sectors in Sri Lanka is not readily available in open sources. The national energy balance is published by Sri Lanka Sustainable Energy Authority every year but the energy use in AFL sectors are not separately represented and it is accounted under domestic sector. Some information about the cost of machinery use in cultivation of vegetable and fruits are available in the booklet "Cost of cultivation of agriculture crops" an annual publication by the Socio Economic and Planning Center, Department of Agriculture, Peradeniya and production details of paddy, vegetables, fruits and other crops are available in both Ministry of Agriculture and Department of Agriculture web sites. Also, production statistics in fisheries sector and livestock sector are available in statistics reports published by Ministry of Fisheries and Department of Animal Production and Health, Peradeniya.

Due to the absence of energy consumption data in cultivation, growing and semi processing, sample survey has been carried out in all the Districts in Northern Province and the summary of those data are presented in this chapter. Considering the prevailing COVID-19 situation, this survey has been conducted via online.

The specific energy consumption for each operation has been established based on the details taken from the questionnaire survey and the results are given in the following tables.

3.2 DATA AVAILABLE IN OPEN SOURCES

3.2.1 AGRICULTURE SECTOR

Table 3.1: Land use, yield and details of machinery use in vegetable and other crop cultivation

	Tomato	Bean	Capsicum	Carrot	Cabbage	Pumpkin	Brinjal	Potato	Ground Nut	Red Onion	Big Onion	Chilli	Green Gram	Cowpea	Black Gram	Soy Bean	Maize	Beet root	Raddish	Leaks	Knokhol	Long Bean	Bushitavo	Okra	Luffa	Snake Gourd	Leaf Vegetable	Bitter Guard	Cucumber	Winged Bean	Ash Plantan	Sweet Potato	Kurakkan	Gingelly	Murunga	Manioc	Ind.Tuber & Root
Land area annualy for both seasos	699	121	427	260	388	749	1426	150	5566	5616	422	3106	2215	2192	7229	1520	1166	394	21	37	2	930	226	901	45	527	741	594	29	20	491	101	427	1912	138	1202	
Yeild - ton	14873	952	4115	4468	8033	13448	24368	2353	9143	87240	2996	(S) 6599	2194	2072	7388	2620	3686	6982	489	792	14	10041	2251	11648	019	10620	6002	10812	463	220	0062	1120	222	1501	0987	21347	
Tena ton												(O) 606																									

Source: https://www.doa.gov.lk/SEPC/images/cost_of_cultivation/cost_of_cultivation_19.pdf

Table 3.2: Land use, yield and details of machinery use in fruit cultivation

	Banana	Pineapple	Mango	Passion Fruit	Papaw	Rambutan	Lemon	Orange	Avacado	Guava	Mandarin	Pomegranate	Watermelon
Land area ulilyze -Hactares for both seasons	2201	65	1542	52	419		628	109		198		224	
Yeild - ton	41634	643	11855	356	9420		4067	653		1727		880	

Source: https://www.doa.gov.lk/SEPC/images/cost_of_cultivation/cost_of_cultivation_19.pdf

3.2.2 FISHERIES SECTOR

Key statistics of the fisheries sector in the Northern Province is given in the following table.

Table 3.3: Key statistics of the fisheries sector in the Northern Province

No.	Description	Results
	Marine Fishing	
01	No of multi day boats	148
02	Out-board engine fiberglass reinforced plastic boats	9,115
03	Motorized traditional boats	1,185
04	Non-motorized traditional boats	3,250
05	Average annual fish catch	86,300 tons (20.7% of total annual catch)
	Inland Fishing	
06	No of inland tanks	50
07	Total tanks area	26,780 hectares
08	Alternative tanks	
09	Inland fishing crafts	1,240
	Average annual fish catch	4,000 tons (4.5% of total annual catch)
	Ornamental Fishir	ng
10	No of stations	
11	Major energy consuming equipment	

Source: Fisheries Statistics 2020, Ministry of Fisheries

3.2.3 LIVESTOCK SECTOR

Table 3.4: Key statistics of the livestock sector in the Northern Province

No.	District	No of Chilling	Chilling Capacity	Annual Milk Collection
110.	District	Centers	(Liters)	(Liters)
01	Jaffna	30	20,400	7,418,509
02	Kilinochchi	4	12,700	2,385,177
03	Mullathivu	3	10,500	2,468,986
04	Mannar	3	13,500	891,309
05	Vavuniya	6	16,500	4,195,795

Source: LIVESTOCK STATISTICAL BULLETIN 2019, Department of Animal Production and Health Peradeniya - Sri Lanka

Table 3.5: Number of Livestock Farmers - 2020

							Po	ultry		
	Cattle and/or			1e	ıe	Broiler Farmers		Egg Producing Farmers		
District	Buffalo (Local)	Buffalo (Improv ed)	Goat	Swine	Local Poultry	No. of Chicken Below 1000	No. of Chicken Over 1000	No. of Chicken Below 1000	No. of Chicken Over 1000	Total
Jaffna	12,198	2,759	18,477	1	502	577	3	812	0	1,894
Kilinochchi	3,605	1,075	3,312	8	3,904	963	3	447	0	5,317
Mullathivu	4,936	832	1,199	8	3,058	300	0	75	0	3,433
Mannar	1,442	498	1,496	12	5,538	129	1	1,334	2	7,004
Vavuniya	4,634	473	1,727	10	2,693	201	0	192	0	3,086

Source: http://www.statistics.gov.lk/Agriculture/StaticalInformation/rubb7

3.3 DATA COLLECTION THROUGH A QUESTIONNAIRE SURVEY

3.3.1 AGRICULTURE SECTOR

Table 3.6: Machinery usage in cultivation

No.	Crop	Machine	Work	Time Spend	Fuel Usage	No of seasons
			Land Pr	eparation		
01	Vegetables	4 wheel tractor with rotor vane	3plough per season including rotor vane	2 hrs per acre for disc plough and 1.5 hrs for rotor vane plough	5 liters per hour	2 seasons, Average 4 months per season
02	Vegetables	2 wheel tractor	3 plough per season including rotor vane	3 hrs per acre for disc plough and 3 hers for rotor vane plough	3.2 liters per hour	2 seasons, Average 4 months per season
03	Paddy	2 wheel tractor	Five plough per season	3 hrs per acre	3.2 liters per hour	2 seasons
04	Paddy	4 wheel tractor with rotor vane	Five plough per season	2 hrs per acre for disc plough and 2 hers for rotor vane plough	5 liters per hour	2 seasons
05	Fruits (Yearly crops eg, papaya, water melon)	4 Wheel tractor	Two plough per year	1.5 hrs per acre per plough	5 liters per hour	One season
		Wee	ding and Soil	turning/softening		
06	Paddy	Low land power weeder	Grass cutting	0.5 acre per day	3 liters per acre	2 seasons
07	Vegetable like Okra, chili having 2 feet space	Inter Cultivator	Weeding	3 hrs/Acer and two time per season	Petrol 3.5 liters per acre	2 seasons
			Water 1	Pumping		

08	Vegetables, Chili etc.	2 inch electric pump. One pump per acre	Water pumping	7 hrs per day	10kWh per day per acre	2 seasons for chili, Average 4		
09	Cimi etc.	3 inch pump. One pump per 2 acre		8 hrs per day	3.5 liters/day	months per season		
	Spraying							
10	Vegetables, fruits	Petrol engine driven sprayer	Spraying	3.5 hrs per acre	1.5 liters/acre	One or two times per week		
11	Paddy	Petrol engine driven sprayer	Spraying	3.0 hrs per acre	1.0 liters/acre	Two times per season		
			Harv	esting				
12	Paddy	Combine harvester (Bhuthaya)	Harvesting	1.5 hrs per acre	9 liters per hour	2 seasons		

3.3.2 FISHERIES SECTOR

Table 3.7: Energy and production data in the fisheries sector

No.	Description	Results
	Diesel usage in multi day boats	Even though there are 148 multiday boats
01		registered in Northern Province, no any boats are
01		involving in deep sea catching fish in Northern
		area
02	Kerosene consumption in day boats	40 to 60 liters/day
07	Average catch per single day boat	120 kg
09	Power of the aerator blower in ornamental	250 W
09	fish farming	230 W
10	No. of ornamental fish farms	

3.3.3 LIVESTOCK SECTOR

Table 3.8: Details of milk cooling cans

No.	Description	Details
	Power requirement in can coolers	
	Small Can cooler (50 liters)	0.5 kW
01	Mini cooler (200 liters)	1.2 kW
	Mini cooler (300 liters)	1.5 kW
	Mini cooler (500 liters)	3.5 kW

Table 3.9: Details of processing centers in Northern Province

No	Description		Nos. of	Centers - Dis	trict Wise	
No	Description	Jaffna	Mullativu	Kilinochchi	Vauniya	Manar

1	Nos. of beef processing centers			
2	Nos. of milk collecting centers			
3	Nos. of milk processing centers			
	Broiler Chicken			
4	No. of farmers less than 1000 birds			
5	No. of farmers more than 1000 birds			
	Egg Production			
6	No of farmers less than 1000 birds			
7	No of farmers more than 1000 birds			

Table 3.10: Details of biogas units

	Biogas Generation	Jaffna	Mullativu	Kilinochchi	Vauniya	Manar
1	Units available					
2	Future potential					

CHAPTER 4: BASELINE ANALYSIS

4.1 INTRODUCTION

As indicated above, analysis of baseline of energy use in the AFL sector is a difficult task due to absence of readily available data. However, an attempt has been taken to establish a few baselines taking the data and information presented in chapter 2 and making several assumptions, and the results are presented in this chapter.

Most of the short rotation vegetables are harvested within 45 to 55 days. Considering this the farmers in some areas in Sri Lanka are practicing 4 to 5 cultivation seasons for these vegetables. But this practice is not happening in Northern Province and cultivations are mainly done during two major seasons. Water pumping in vegetable farming consumes considerable amount of energy. However, water is not required in rainy days and the seasonal variations, mainly the rainfall pattern have been studied and accounted when establishing baseline details below.

Multiplied the specific energy use (eg. Diesel consumption for plough per acre) with the total volume (eg. Total land area) and thereby the total energy consumption has been established in each crop for each operation.

4.2 LIMITATION OF THIS ANALYSIS

The accuracy of these analysis is depending on the accuracy of the data and information. The data taken for this analysis have been taken from open sources and a questionnaire survey. The data gathered from the questionnaire survey is accurate but operating frequency of the machineries (Land preparation, water pumping, spraying etc.) are varying from area to area. Taking in to consideration all the variables, average figures have been established and presented in this chapter.

Recommendation for enhancing the accuracy of data

It is recommended to carry out the data collection survey in detail enhancing the survey population every year and establish more accurate specific indicators.

4.3 FORECASTING

Forecasting in agriculture sector is a regular exercise and it is being done in provincial and national level in two scenarios. One is immediate forecasting for next season and the other one is five-year forecasting development of programmes accordingly. However, with the present Government's new directives of achieving 100% organic fertilizer, it is required to revisit these plans and amend accordingly. The recommendations made in this document will be useful when amending these plans.

Forecasting in fisheries sector is conducted with different models developed (eg. Auto Regressive Integrated Moving Average model) mainly for enhancing the fish catch. With these new technologies the traveling time can be minimized and thereby the overall energy usage can be optimized.

4.4 AGRICULTURE SECTOR

4.4.1 AVERAGE VALUES TAKEN FOR ESTABLISHING THE ENERGY USE

Following average values have been taken from the data presented in Chapter 3 when estimating the energy use in agriculture industry

- Availability of electricity or solar powered pumps 20% of total land area
- Loading factor of a pump -75% (due to the availability of rain, supplying water is not necessary at the whole time period)

4.4.2 RESULTS

Table 4.1: Energy use in paddy cultivation

Description	Results
Specific energy requirement per acre per season	64 liters diesel and 12 liters of
	petrol
Total land area for both seasons	181,362 Acres
Total energy requirement per year	
Land preparation	7,254,480 Liters of diesel
Harvesting	4,352,700 liters diesel
Spraying	1,632,250 Liters of petrol
Weeding	544,000 Liters of petrol

Table 4.2: Energy use in vegetable cultivation

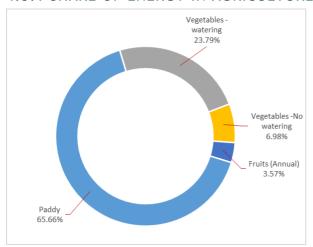
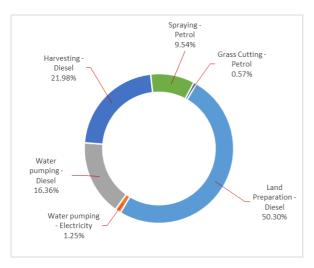

Description	Results	
Specific diesel/kerosene requirement per acre per season for	30 liters diesel	
land preparation	50 liters dieser	
Specific electricity requirement per acre per season for water	60 kWh	
pumping	00 KWII	
Specific diesel requirement per acre per season for water	84 Liters of diesel	
pumping	64 Liters of theser	
Specific electricity requirement per acre per season for spraying	9 liters of petrol	
Specific electricity requirement per acre per season for weeding	3.5 liters of petrol	
Total land area per seasons - watering crops	18,530 Acres	
Total land area per seasons – non watering crops	23,197 Acres	
Total energy use in land preparation	2,503,600 liters	
Total energy use in water pumping		
Electricity	2,223,600 kWh	
Diesel/kerosene	3,113,000 liters	
Total energy use in spraying	333,540 Liters petrol	
Total energy use in weeding	146,100 Liters petrol	

Table 4.43: Energy use in fruits cultivation

Description	Results
Specific diesel/kerosene requirement per acre per season for	30 liters diesel
land preparation	50 liters trieser
Specific electricity requirement per acre per season for water	46 kWh
pumping	-10 KWII
Specific diesel requirement per acre per season for water	65 Liters of diesel
pumping	
Specific electricity requirement per acre per season for spraying	15 liters of petrol
Specific electricity requirement per acre per season for grass	18 liters of petrol
cutting	-
Total land area per seasons- Watering fruits	2585 Acres
Total land area per seasons- Non watering fruits	6882 Acres
Total energy use in land preparation	201,375 liters
Total energy use in water pumping	
Electricity	310,275 kWh
Diesel/kerosene	434,385 liters
Total energy use in spraying	102,000 Liters petrol
Total energy use in grass cutting	123,885 liters petrol


4.5 ENERGY BALANCE

4.5.1 SHARE OF ENERGY IN AGRICULTURE SECTOR

The total energy balance by crops in agriculture sector is given in the figure 4.1. The energy consumption in paddy cultivation is the highest in Northern Province and rest of the energy is shared equally among vegetable and fruits cultivation

Figure 4.1: Share of energy by crop

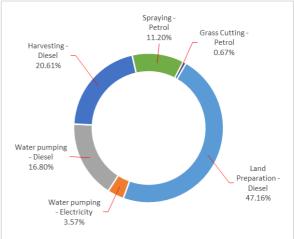


Figure 4.2: Share of energy by process

Figure 4.3: Share of energy cost by process

Out of the total energy consumption in agriculture sector (cultivation) land preparation and harvesting consume 54% and 27% respectively. Water pumping is the next and it shares around 10.0% of the total energy.

4.5.2 SHARE OF ENERGY IN PADDY PRODUCTION

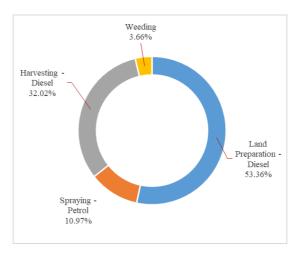
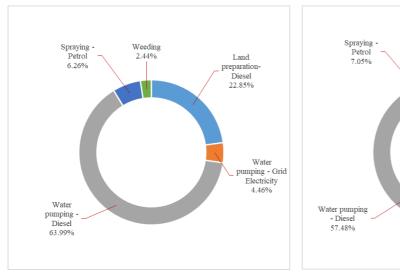



Figure 4.4: Energy usage pattern in paddy production

4.5.3 SHARE OF ENERGY AND ENERGY COST IN VEGETABLE CULTIVATION

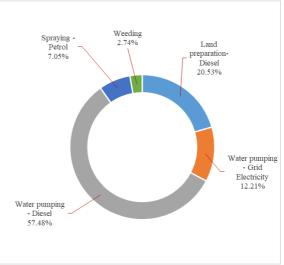
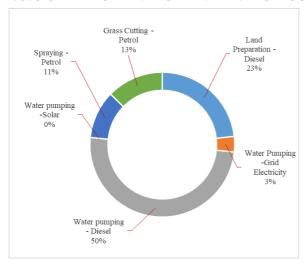



Figure 4.5: Energy share by process

Figure 4.6: Energy cost share by process

The energy consumption and energy cost variation pattern in vegetable crops are given in the above figures. More than 60% of total energy consumption shares are for water pumping and approximately 23% for land preparation.

4.5.5 SHARE OF ENERGY AND ENERGY COST IN FRUITS CULTIVATION

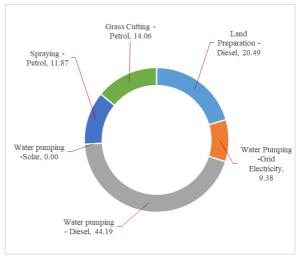


Figure 4.7: Energy share by process

Figure 4.8: Energy cost share by process

4.5.6 THE ANALYSIS OF EMBEDDED ENERGY

The analysis of embedded energy or the energy required to produce one kg of paddy, vegetable and fruit is given in the following table. The average percentage of embedded energy to the total energy taken out from vegetable and fruit production is in the range of 2.0% to 7% and 10.6% for paddy production.

Similar analysis has been done for other four provinces (North Western, Uva, Eastern and Southern provinces) and the embedded energy figures are considerably higher in North Western, Uva, and Southern provinces compared to Eastern and Northern provinces. Use of machinery mainly in land preparation is easy in Eastern & Northern provinces due to flat terrain and there by the specific energy use is considerably low in these areas than the other provinces.

In average the yield in vegetables and fruits are considerably higher in Northern Province than the other four provinces. As a result of these two factors, the embedded energy in some of the food production in Northern Province is considerably less than the other three provinces.

A production process with share of embedded energy less than 10% has been cited as productive in international research literature. The above cultivation processes can be found within that range. Ideally in the calculation of embedded energy indirect energy usage in the entire product lifecycle should also be accounted, but it would still not exceed the 10% margin and therefore is considered negligible in this case.

Table 4.5: Energy usage in agriculture sector

Сгор	Embedded Energy (Emergy) - kJ/kg of product	Total Energy in Food - kJ/kg	%
Paddy	1178	11524	10.62
Vegetables - 2 seasons (watering)	447	16500	6.96
Vegetables - 2 seasons (No watering)	140	16700	3.58
Fruits (Annual crops)	284	15100	3.37
Fruits (Permanent Crops)	303	15100	2.00

4.6 FISHERIES SECTOR

4.6.1 RESULTS

Table 4.6: Energy usage in fisheries sector

No.	Description	Results	
01	Total annual kerosene/petrol usage in day boats	21,575,000 liters	
02	Kerosene usage in inland fishing crafts (Oruwa)	2,640,000 kWh	

4.7 LIVESTOCK SECTOR

4.7.1 RESULTS

Table 4.8: Energy generation in livestock sector

No.	Description	Results	
01	Energy generation in biogas units	m³	

Energy consumption in livestock sector is not substantial than the other sectors. Some of the energy use cannot be quantified due to lack of field data. Biomass, electricity and LPG is used in milk processing in Northern province but is difficult to quantify at this stage, and it is recommended to conduct a survey and establish the energy use in this process.

CHAPTER 5: ANALYSIS ON GREEN ENERGY POTENTIAL IN AGRO-INDUSTRY

5.1 INTRODUCTION

This analysis has been done based on the results of the baseline analysis presented in the chapter 04. Further, this analysis has been limited to energy consumption in production (growing, farming and fishing) and semi processing activities. Commercially and technically proven technologies have been considered under this section. Also, the up-scaling potential and operating performance under the local climatic conditions have been considered when analyzing green energy potential in AFL sectors.

5.1.1 OFF-GRID RENEWABLE ENERGY APPLICATIONS

5.1.1.1 Solar Water Pumping

It has been estimated approximately 7500 diesel water pumps are being operated for vegetable cultivation in the Northern Province. These pumps are operating in electricity non-accessible areas/places. In average 3 to 5 liters of diesel is consumed per acre per day in vegetable farming and one diesel pump is serving for two acres. This operation can be partially replaced with 2-inch solar powered pump in day time. In early stages of the vegetable cultivation, water is supplied in early mornings and evenings and direct solar pumps are not suitable for this operation unless high head (approximately 60 foot) storage is available and only the day time diesel pumps usage can be eliminated.

The cost of the solar water pumps is not uniform in Sri Lankan market, however cost of a standardized solar pump is in the range of Rs. 500,000.00 to Rs. 800,000.00. The approximate diesel saving would be around 130 liters per month per pump and the simple payback period of this replacement would be around 2.6 years to 4.2 years.

5.1.1.2 Other Solar Applications

Solar insect traps are available in international market with 12V battery and solar charging system and can be used as an off-grid system. These traps are generally used for night time flying insects and need to select the appropriate system before using. The energy usages in these units are not significant and equivalent CO₂ savings are negligible, but practically it has an impact on increasing productivity in agriculture sector. Use of solar energy in *elephant fences* are recommended since most of those operations are in remote areas where grid electricity supply is not available. The electricity usage in these units is considerably small and the technology has been developed with battery storage for easy operations and those systems are available with attractive price in the open market now. Solar home standalone systems are available in open market similar to the elephant fencing technology and can be used in both huts, shelters in agricultural lands and in night time inland and lagoon fishing. With this intervention, the existing kerosene usage can be minimized.

5.1.1.3 Biomass Applications

Use of high-quality energy sources like electricity is not encouraged for low temperature (low quality) applications as per the principals of thermodynamics. There are plenty of low temperature drying and low temperature hot water applications available in Agro-industry

mainly for drying crops and washing, cleaning and cooking in institutions like training centers. Locally fabricated low temperature dryers and low temperature hot water generators fueled by biomass are available in open market now with attractive prices. Potential is there to eliminate the existing electricity, kerosene or LPG usage in Agro-industry by introducing these systems and thereby reduction of carbon foot print.

5.1.1.4 Biogas for thermal applications

Use of biogas in thermal applications is not a new intervention but the issues existing in this sector have not been properly addressed. Most of the individual small-scale biogas units have been abandoned in the Northern Province mainly due to social aspects. Therefore, it is better to carry out a situation analysis on use of biogas and establish proper criteria on suitability of use of biogas. There are 32,450 cattle farms in the Northern Province and theoretically establishment of biogas units in all these places are possible.

5.1.2 ON-GRID RENEWABLE ENERGY APPLICATIONS

5.1.1.1 Solar roof top systems

Solar roof top systems are encouraged by the Government of Sri Lanka under three systems viz. solar net metering, solar net accounting and solar net plus scheme. The national grid is acting as an energy bank and the generated electricity during day time either can be utilized at the site or excess can be fed in to the grid. Electricity generation and the consumption are metered in separate meters and electricity bill is calculated end of the month accordingly. More details about solar roof top are available at the Ceylon Electricity Board, Sri Lanka Sustainable Energy Authority and Public Utilities Commission of Sri Lanka web sites.

The electricity consumption can be offset with the net metering scheme and a sample analysis of solar roof top system is given in the following table. In general maximum 5 kW solar system is recommended by CEB for a house with single phase electricity supply. If someone needs to enhance the solar capacity further, three phase supply is required and the solar roof top system capacity can be enhanced up to 15kW.

No.	Land area - hectares	Average monthly electricity use including house load - kWh	Monthly electricity bill - Rs.	Equivalent solar roof top system - kW	Simple payback period - Years
01	1	226	6133.50	2	4
02	2	352	11803.50	4	4
03	3	550	20713.50	5	3

Table 5.1: Investment and payback period for solar rooftop systems

Since the electricity supply is available island wide, electrically driven Agro machineries such as water pumps, milk can coolers, sprayers, threshers, dryers etc. are favorably utilizing the CEB national grid in many areas rather introducing solar standalone systems. The overall energy efficiency in the solar standalone water pumping system is comparatively lower than the solar roof top system. This is due to storing electricity in batteries and conversion from DC to AC. The required electricity can be offset through solar roof top system. Since the electricity network has reached 100% households and installation of solar rooftop systems are possible in most of the areas, it will be a more practical reliable solution since the solar roof top systems are regulated through Sri Lankan Standards SLS 1552, SLS 1542 to SLS 1547, SLS 1553 and SLS 1554.

5.1.3 BIOMASS APPLICATIONS- SMALL SCALE POWER GENERATION

A feasibility study has been carried out by UNDP Sri Lanka office to ascertain the viability of establishing small scale biomass power plants in Sri Lanka. As per the results of this study, the most viable technology for small scale biomass power plant is steam turbine-based power generation system. According to the analysis done under this study, seven strategic locations have been identified in the Northern Province with total potential capacity of 8MW and annual biomass requirement to run these systems would be around 150,000 tons. Agriculture waste has been considered as the prospective source of biomass under this study and if these proposals were implemented, potential market will be there to supply biomass at a reasonable cost.

5.1.4 BIOGAS APPLICATIONS- POWER GENERATION

Power generation with biogas driven engine is not a new application to Sri Lanka. There is a grid connected power plant in Attanagalla with 80kW generating capacity driven by biogas and biogas is generated using poultry waste.

5.1.5 ENHANCEMENT OF ENERGY UTILIZATION EFFICIENCY

Energy consumption in paddy cultivation is substantially higher than the energy consumption in other crops and this is mainly for land preparation and harvesting. Four-wheel tractors, two-wheel tractors and combine harvesters are being utilized in many places for this purpose and introduction of productive machineries (having higher output and less down time) in these categories are very much encouraging and there by potential saving of diesel is substantial.

CHAPTER 6: RECOMMENDATIONS

6.1 INTRODUCTION

The results of the questionnaire survey and the results of the analysis done in chapter 5 have been considered when developing these recommendations.

6.2 POPULARIZATION OF TECHNICALLY AND COMMERCIALLY VIABLE TECHNOLOGIES

A number of programmes have been initiated for introduction of green energy technologies in the Northern Province of which some have succeeded and others failed. Some of these projects are assisted by donors and others are partially or fully funded by the Government. Taking in to consideration the success and failure factors of past programmes, it is recommended to design a comprehensive programme to introduce technically and financially viable green energy technologies to the AFL sectors.

6.3 CROSS-SECTORAL RECOMMENDATIONS

6.3.1 INTRODUCTION OF SOFT LOAN FACILITIES

One of the major difficulties faced in promoting and implementing RE applications in the Agro-Industry is lack of financial capability and the investment load. Many of the RE technology applications require a very high initial cost, which creates a wide gap in the technology requirement and actual application. Therefore, it is essential to incorporate financial assistance models when introducing these technologies to the market.

There is a substantial number of soft loan schemes available through both public and private banks in Sri Lanka, but awareness level is very low within the farmer communities. The information should be effectively communicated to the farmers and the loan facilities should be easily accessible.

6.3.2 INTRODUCTION OF NEW TECHNOLOGIES

The importance of use of machineries for cultivation and semi processing activities has been emphasized in many occasions when carrying out the field data survey for collection of energy consumption details in cultivation and semi processing. The main objective of this initiative is to reduce the manpower involvement in this sector. Farmers highlighted two major issues. Moving away of the young generation from agriculture activities is the first issue and gradual reduction of human power is the second issue. One of the direct solutions to overcome the negative impact of the above mentioned issues is introduction and enhancement of use of machineries and systems in agriculture sector. Use of mini tillers, use of sprinkler and drip irrigation systems are some of the examples and they are expecting advanced technologies for other activities such as planting seeds and plants, weeding, applying fertilizer etc.

6.3.3 ENHANCEMENT OF KNOWLEDGE ON RENEWABLE ENERGY & ENERGY EFFICIENCY

One of the major reasons for RE and EE applications to backfire is the lack of knowledge and awareness among the farmer communities. It is very important to educate the farmers and other sector related persons including government officials, service providers, and technology suppliers. It should be emphasized that the government is encouraging 100% organic farming, and use of clean energy sources combined with energy efficiency measures have a number of benefits including creating environmental sustainability, reducing energy cost, and increasing income margins.

6.3.4 DATA RECORDING AND INFORMATION SHARING

With the technological developments in the agriculture field, the need for a reliable and accessible information network has become prominent. As a promising solution the Food and Agriculture Organization (FAO) and International Telecommunication Union (ITU) have introduced the concept of e-agriculture, developing the 'Sri Lanka E-Agriculture Strategy' and 'E-Agriculture Action Plan 2016-2020). This discusses the methods of integrating agricultural technology with ICT introducing recommended actions for practical implementation. Recommended actions include increasing the availability and accuracy of agricultural information by creating, updating, analyzing and linking critical databases, developing accessible, affordable, and secure ICT platforms, networks, and devices, and improving the financing, investing and banking outreach to agriculture sector leveraging on electronic and mobile technologies. Unlike in the old days, the younger generation is more familiar with digital interfaces and smart applications creating high probability of success for this eagriculture concept. A preliminary initiative has been taken under the UNDP NAMA project jointly with SLSEA by creating the EnerGIS data reporting web portal. This should be further enhanced to upload and share agro data.

6.3.5 DEMONSTRATION SITES

Demonstration sites are proved to be effective extension tools used in the AFL sectors. They provide an opportunity for the farmers to observe and study new technologies under similar environmental and practical conditions they are familiar with. This approach is quite welcome in the farmer communities as it enables them to reach out for better technological options without any investment risk. With the hands-on experience gained through training at demonstration sites, they are capable of making educated choices with more confidence.

Existing sites with sufficient facilities (i.e: land extension, accessibility) can be developed in to demonstration sites to practice sustainable energy solutions including EE measures and RE technologies with predicted beneficial outcomes. How the site is to be funded needs to be clear and guaranteed for the proposed life of the demonstration site. Standard practices and conditions that need to be maintained should be clearly defined and a reliable recording system and an effective communication plan needs to be developed.

6.4 RECOMMENDATIONS - AGRICULTURE SECTOR

6.4.1 EFFICIENCY ENHANCEMENT IN AGRICULTURE MACHINERIES

The future of Agriculture field is largely relying on machineries and tools with the technological developments in the sector. Use of machineries for cultivation and semi processing activities has enabled covering up for the decrease in man-power and has enhanced the productivity.

In addition to this, land preparation and harvesting activities account for the largest energy share in crop cultivation as shown in Chapter 4. Mainly these two steps are using agriculture machineries driven by diesel and petrol (in small scale machineries) fuel rather than electricity. Therefore, efficiency enhancement in these machineries and targeted training of drivers and field workers is a crucial step in applying energy saving measures.

Continuous research and field trials are needed for the improvement of the machinery as well as to enhance the efficiency. However, it is not very practical to apply provincial level activities to achieve measurable savings in terms of energy. A National level approach such as setting standards and quality control measures on machinery imports is more appropriate, as it will gradually lead efficient equipment to penetrate the market. Regulatory provisions are already available with local authorities like the Sri Lanka Sustainable Energy Authority.

Sri Lanka Sustainable Energy Authority Act, No. 35 of 2007

Section 35 (2)

For the purpose of carrying out its responsibilities under subsection (1), the Board shall:—

(f) implement energy labeling programs for appliances and devices and establish benchmarks;

Section 36 (2)

For the purpose of ensuring that the benchmarks established under subsection (1) are being complied with, the Board may, where it considers it necessary:-

- (c) monitor, with the consent of all relevant persons concerned, energy consumption in buildings and industrial premises and monitor fuel efficiency of land vehicles, ships and aircrafts, in association with relevant agencies;
- (f) enforce limits and codes of practices for existing and proposed buildings, industrial premises, land vehicles, ships and aircraft, in association with relevant agencies;

6.5 RECOMMENDATIONS - LIVESTOCK SECTOR

6.5.1 STUDY ON UTILIZATION OF BIOGAS UNITS

Biogas technology has been in existence since early 1970's in Sri Lanka, but has not become popular compared to other RE technologies such as solar energy. Even though large-scale biogas units are a highly preferred solution for the AFL sectors considering the clean energy production, environmental friendly organic waste management, and generation of bio fertilizer, its application is seen mostly limited to lighting, cooking and heating in domestic level and small-scale production of bio fertilizer in the agro-industry. Several studies including the UNDP Energy NAMA project have been performed over time to identify the issues related to backfiring of biogas application. These studies have conveyed that the bio degradation process itself and the routine maintenance practices required to function the system smoothly have been largely disregarded when promoting the technology within farmer communities. Further studies should be conducted with practical intervention and trial studies to assess the compatibility of the biogas technology with existing practices in AFL sectors.

6.5.2 BIOMASS HOT WATER GENERATORS FOR CURD INDUSTRY

Boiling milk in curd making process is mainly done using either biomass stoves or LPG stoves. Controlling the temperature precisely in this process is difficult. Also, maintaining the hygienic condition is difficult since most of the stoves are built in open spaces.

Use of biomass fired hot water generator is an ideal solution to overcome these issues and the quality of products can be enhanced. A yoghurt manufacturing facility is available at Dikoya which is equipped with a biomass hot water generator and overall productivity has enhanced in to a better level than the business as usual operation after this initiative.

6.5.3 SMALL SCALE MILK CAN COOLERS FOR STORING MILK AT DOMESTIC LEVEL

Small scale dairy farming is a common livelihood among the farmer community in the Northern Province of Sri Lanka, housing 32,450 cattle farmers. The milk produced is transported to collecting centers without any form of cooling, which can result in low hygienic conditions. A cow produces around 10 litres of milk in the morning, and 6 liters in the evening. Due to lack of facilities farmers have stopped collecting the evening milk causing additional on-farm losses. Small scale on-farm milk cooling systems with insulated milk cans are being used worldwide as an immediate solution to these issues.

Table 6.1: Future potential technologies

N o	Prospective technologies	Nos of technology required							
		Jaffna	Vavuniya	Mullativu	Mannar	Kilinochchi			
1	Small scale milk can coolers								
2	Solar roof top systems								
3	Biomass boilers for curd industry								
4	Solar Irrigation Unit								
5	Solar Water Pump								
6	Solar Power sales Centre								
	Biogas Generation								
1	Units available								
2	Future potential								

6.6 RECOMMENDATIONS - FISHERIES SECTOR

Since renewable energy and energy efficiency interventions are still at the preliminary phase in the fisheries sector, it is recommended to introduce new technologies through research & trial, pilot studies, and practical demonstrations.

CHAPTER 7: ACTIVITY PLAN

7.1 INTRODUCTION

The results based action plan is considered for implementation of green energy technologies and systems in the AFL sectors in Eastern Province. The priority has been given to easily implementable and high impact actions and new technologies considered separately under R&D section since these have not been proven as commercially and technically viable technologies.

7.2 ACTIVITIES

Table 7.1: Recommended activities for the action plan

No.	Sector	Intervention	Activity		
		Training And Capacity Building	Training Agriculture Inspectors		
1	_	on RE And EE technologies/systems	Training programs for farmer producer organizations		
2			Introduction of solar roof top systems		
3		Renewable Energy Applications	Solar home systems for sheds, huts, farms		
4	Cwasa Castawal		Establish demonstration sites		
5	Cross-Sectoral Activities	Data recording and information sharing	Upgrading energy consumption and production data platforms		
6		Financial assistance through commercial/regional banks	Introduction of soft loan facilities		
7		A 15 45	Solar powered battery-operated insects control system		
8		Application research on new technologies	Testing of new machineries for land preparation, digging holes, planting, fertigation, weeding, etc.		
9	_		Solar water pumps supportive programme		
10			Introduction of battery operated sprayers		
11	Agriculture Sector	Popularization of commercially viable technologies	Temperature and RH controlled food storage system		
12	_		Chipping machines for green matters (pruning material, grasses, branches etc.)		
13	-		Biomass fired food dehydrators - maize, fish		
14			Small scale milk can coolers		
15	Livestock Sector	Popularization of commercially	Biogas systems - large units		
16		viable technologies	Biomass fired hot water generators for curd making process		
17	Fisheries Sector	Popularization of commercially viable technologies	Solar thermal powered fish dryers		

Training and Capacity Building on RE & EE Technologies

Background: One of the main barriers in promoting sustainable energy technologies in the Agro-Industry is lack of knowledge and awareness among the sector community. It is very rarely that the energy and agricultural sectors collaborate to make sustainable development plans, or foster an effective approach for smooth technology transfer. This results in isolated energy systems that are non-productive and non-progressive. Knowingly, the very few energy related projects considering the Agro-Industry in Sri Lanka have not been sustained well in the industry. This failure is largely owing to the fact that there is no accessible and reliable knowledge regarding the adopted energy systems, and technology support is not readily available.

It is a priority requirement to create awareness and provide training and capacity building on sector related energy aspects and the RE & EE Technologies among different levels in the Agro-Industry, including government officials, service providers, technology suppliers, and farmer communities.

Objective: Creating awareness and capacity building on sector related energy aspects and the RE & EE technologies among different levels in the Agro-Industry

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets based on the following strategy/ies.

- 1. Training of trainers i.e. Training of Agriculture Inspectors and using them as focal points
- 2. Reaching out for Energy Services Companies (ESCOs) such as the Industrial Services Bureau (ISB)
- 3. Assistance from relevant authorities such as SLSEA

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Introduction of solar roof top system (Domestic level)

Background: "Sooryabala Sangraamaya" Battle of Solar Energy is a government program to power up the country with renewable energy up to a 50%, by year 2025, reaching for the target of 100% renewables by 2050. Under this program, domestic level consumers are encouraged to install solar roof top systems up to 5kW under one of the three connectivity plans; net-metering, net-accounting, and net plus schemes. Soft loan facilities are available with most of the prominent banks at interest rates as low as 4%. Even though the solar power generation is popular among industrial and commercial sectors, the knowledge is lacking in the domestic levels. Stand-alone off-grid solar applications are used to some extent, but the grid connected systems are more reliable and useful compared to these. It is important that the function of these systems, their benefits and economic advantages are clearly transmitted to agricultural communities through awareness programs, and the systems should be promoted through introducing affordable technical and financial aid.

Objective: Popularization of commercially viable technologies

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Introducing and popularizing ongoing schemes
- 2. Creating links to the available financial tools

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Solar home systems for sheds, huts, farms

Background: Despite the technological advancements in the Agro-Industry some traditional farming practices are continued up to date in the rural areas. For example, to protect the crops from wild animals, farmers keep watch during the night in small tree houses built in the field. Some stages of harvesting and post-harvest handling including threshing requires overnight field work. Usually kerosene lamps are used to light up the sheds, huts, and farms during the night.

Solar home systems are battery operated solar powered lighting systems with a simple plug and play technique, that can be used to replace the kerosene lamps. They are compact, portable, and durable devices that can light up to 3 LED bulbs. They usually come with a USB output that can be used to charge a simple device such as a mobile phone. It is an easy to use and environmental friendly alternative to the harmful kerosene lamps.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Enhancing technology availability in the market
- 2. Awareness through demonstration sites

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Establishment of Training and Demonstration Sites

Background: Demonstration sites are proved to be effective extension tools used in the Agro-Industry. They provide an opportunity for the farmers to observe and study new technologies under similar environmental and practical conditions they are familiar with. This approach is quite welcome in the farmer communities as it enables them to reach out for better technological options without any investment risk. With the hands-on experience gained through training at demonstration sites, they are capable of making educated choices with more confidence.

Existing sites with sufficient facilities (i.e: land extension, accessibility) can be developed in to demonstration sites to practice sustainable energy solutions including EE measures and RE technologies with predicted beneficial outcomes. How the site is to be funded needs to be clear and guaranteed for the proposed life of the demonstration site. Standard practices and conditions that need to be maintained should be clearly defined and a reliable recording system and an effective communication plan needs to be developed.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Identifying potential demonstration sites
- 2. Introducing funding and maintenance systems for the sites

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Upgrading energy consumption and production data platforms

Background: With the technological developments in the agriculture, fisheries, and livestock sectors the need for a reliable and accessible information network has become prominent. As a promising solution the Food and Agriculture Organization (FAO) and International Telecommunication Union (ITU) have introduced the concept of e-agriculture, developing the 'Sri Lanka E-Agriculture Strategy' and 'E-Agriculture Action Plan 2016-2020'). This discusses the methods of integrating agricultural technology with ICT introducing recommended actions for practical implementation. Recommended actions include increasing the availability and accuracy of agricultural information by creating, updating, analyzing and linking critical databases, developing accessible, affordable, and secure ICT platforms, networks, and devices, and improving the financing, investing and banking outreach to agriculture sector leveraging on electronic and mobile technologies. Unlike in the old days, the younger generation is more familiar with digital interfaces and smart applications creating high probability of success for this e-agriculture concept. A preliminary initiative has been taken under the UNDP NAMA project jointly with SLSEA by creating the EnerGIS data reporting web portal. This should be further enhanced to upload and share energy consumption and production data of all sectors.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Technology development
- 2. Awareness building and training

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Soft loan schemes through regional banks

Background: One of the major difficulties faced in promoting and implementing RE applications in the Agro-Industry is lack of financial capability and the investment load. Many of the RE technology applications require a very high initial cost, which creates a wide gap in the technology requirement and actual application. Therefore, it is essential to incorporate financial assistance models when introducing these technologies to the market.

There is a substantial number of soft loan schemes available through both public and private banks in Sri Lanka, but awareness level is very low within the farmer communities. The information should be effectively communicated to the farmers and the loan facilities should be easily accessible.

Objective: Popularize RE based advanced technologies through financial support models

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Increase awareness on available financial support systems
- 2. Establishing a communication network for information sharing and coordinating the facilities

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Solar powered battery-operated insect control system

Background: Pest control is an important requirement in farming, and chemical pesticides are still used as the fastest and most effective method for this purpose. However, chemical pesticides are health hazards and environmental pollutants, and with the government encouraging 100% organic farming practices, it has become a concern of the farmers to look for pest control methods other than the use of pesticides. Traditional methods of pest control such as crop rotation, intercropping, and growing insect repellent weeds are usually effective but the knowledge and practical experience on how to apply these methods properly have not been passed through generations. The solar powered insect traps are a very attractive effective alternative developed with the advancements in agricultural technology. They are simple devices that include a rechargeable battery powered by solar energy, which is used to light a LED bulb that lure and trap the insect pests. The bulb can automatically light up when there is no sun, and stay up to 4 hours after sunset.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Enhancing technology availability in the market
- 2. Awareness through demonstration sites

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Testing of new machineries for land preparation, digging holes, planting, fertigation, weeding, etc.

Background: The agriculture sectors in all the leading countries with an agriculture-based economy such as China, India, and Bangkok have been developed with research and experiment. It is essential that new machineries are tested and developed regularly for introducing to the field, as the man power in agriculture sector is visibly decreasing. Many people from the younger generation are shifting to livelihood methods other than farming, and the fitness and strength of people have also become less, reducing the capacity to engage in field work.

Objective: To enhance overall productivity of the Agro-Industry

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Continuous updating of technology database
- 2. Conducting trial studies through research and development

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Solar water pumps supportive programme

Background: Water pumping is one of the major energy consuming process in agriculture sector. Electricity, fossil fuel (diesel/kerosene) or solar powered pumps are being used for this purpose and out of these about 80% of pumps are operating with fossil fuel.

Solar powered water pump is not a new technology for Sri Lanka. The first solar pump project has been implemented in 2006. However, lifetime of most of the pumps introduced during last 16 years period were not more than 2 years. This is mainly due to selection of low-quality technologies and absence of proper after sales services. In this situation, farmers are very reluctant to use solar powered water pumps as an alternative source to the kerosene pumps. Some of the pumps are being successfully operated during last five to seven years period with proper maintenance and most of these pumps are produced under European standard.

Compared with the kerosene or diesel engine driven pumps, solar powered water pumps are economical and the simple payback period would be around 2.5 to 3.0 years. The major issue in solar powered water pumps are intermittent operation (Fluctuation of the output with respect to the variation of solar irradiation) and to eliminate this issue, water storage at a higher elevation is required.

It is expected to provide technical guidance for existing users in operation and maintenance and potential users in selecting and purchasing the pumps through this supportive system.

Objective: Introduction of technology sound solar powered water pumping system as an alternative to the diesel/kerosene pumps with proper after sales services and affordable cost.

Main Targets: To be set by the executing party

Recommended Actions

- Conduct a comprehensive study on the performance of solar powered water pumps in agriculture sector and identify failures and success stories and identify suitable technologies (eg. AC power pumps with inverters, DC power pumps, pumps with oil cooled motor and electronically controlled, pumps with water cooled motors etc.)
- 2. Develop few demonstration sites with best technologies covering major agriculture areas
- 3. Education and training programmes on solar pumping and solar technologies
- 4. Implement star rating system for solar water pumps and discourage use of low performance pumps
- 5. Introduce lifecycle-based procurement system

Stakeholders

As identified by the executing party

Responsibility

Estimated Budget – LKRM

To be assigned

Introduction of battery-operated sprayers

Background: Sprayers are widely used in agriculture to apply pesticides, herbicides, and fertilizers to the field. Currently there are two types of sprayers used in Sri Lanka, the conventional hand operated sprayers and the petrol engine driven sprayers. Hand operated sprayers work through an air pump that compresses air and release the liquid with a pressure. The applicator must pump the air with a handle lever before spraying. This is suitable for small plantations, but is not feasible for large scale plantations spreading over several acres.

Petrol engine driven sprayers use the technology of a DC motor pump powered by a rechargeable battery. They require much less man power, are less heavy, and are more convenient to use compared to the hand operated sprayers. Both the grid electricity and solar charging can be used to recharge the batteries, and once charged it can spray up to 20 tanks making it very convenient to use. Some models come with the pump control feature including a speed regulator so as to control the speed of the pump output that suits your spraying needs. Many long-term benefits are associated with the petrol engine driven sprayers including cost and time efficiency. These are low maintenance devices and spare parts are readily available in the market.

Objective: Applying RE based technologies for creating user-friendly, easily operated and reliable technological advancements and attending to gender responsive technology needs

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Introducing suitable financial assistance model (i.e. 50% government fund and 50% owner's fund)
- 2. Introducing easy payment modes
- 3. Introducing soft loan schemes through development banks

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Temperature and RH controlled food storage system

Background: Food products are easily perishable under ambient temperatures, and therefore it is very important to maintain controlled environment in storage spaces to increase the shelf life of stored food preserving their nutritional qualities. The study is focused on short term storage of agricultural crops on site during the transfer period from farmers to transporters. Amongst the existing technologies, thermally driven air conditioner and relative humidity control systems are favored currently. Optimum conditions are maintained at 25-35 C temperature and 60-65 % RH for most of the food products including potatoes, ginger, turmeric, black pepper and other spices. This storage system has been effectively adapted in Dambulla and Jaffna for the storage of enasal (cardamom) and onions respectively. Storage capacity for a substantial storage of 100*30 ft is approximately 600 – 700 K kilograms of onion which requires a 1.5 kW machine to run the system maintaining optimum conditions. Energy use is negligible compared to the output and the payback period for the investment in building the system is usually less than one year depending on the market parameters.

Objective: Introduce RE based advanced technologies to minimize wastage of food and ensure constant market supply

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Awareness through demonstration sites
- 2. Financial support systems (grants /soft loan facilities)

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

AG -12

Chipping machines for green matters (pruning material, grasses, branches etc.)

Background: Discarding agricultural waste is a problem faced by many small-scale farmers. Cutting, drying, and processing bio waste is strenuous and time consuming, and first-hand burning is harmful for the environment. As a solution for this, small-scale chipping machines/ agricultural shredders can be used for chopping agricultural waste, farm waste and garden waste and convert them to compost manure. Government is encouraging 100% organic farming, and the use of these shredders to produce natural compost manure with bio waste would be both economically advantageous and promoting sustainable agriculture technology. Additionally when plant waste is directly used in composting process, some parts will remain undigested which have to be separated from the manure. Chipping will eliminate this need enhancing the productivity of composting process. A range of bio waste products such as pruning material, dry and wet coconut fronds/husks, harvested banana trees can be processed in these chipping machines. Different models are available such as Tractor PTO agriculture shredders (prevalent in Sri Lankan market), Mini Tractor operated shredder machine, Electric shredder machine, Coconut Shredder Machine, and Garden Shredder Machine, etc.

Objective: Applying RE based technologies for introducing user-friendly, easily operated and reliable technological advancements and attending to gender responsive technology needs

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Awareness through demonstration sites
- 2. Financial support systems (grants /soft loan facilities)

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Biomass fired food dehydrators

Background: Drying/ dehydration is a critical step in post-harvest treatment procedure, which is necessary to avoid spoilage/molding of crops due to moisture and increase shelf life during storage. Food products with low-medium moisture content (<30% wet basis) such as paddy, maize, sesame seeds, legumes, etc. are dried and food products with high moisture content (>50%) such as fruits, vegetables, fish, meat, etc. are dehydrated in the process. Traditionally drying involved capturing direct heat from the sun, but with the technological advancements in the Agro-Industry mass harvesting is more common making it difficult to use sun drying effectively. Using biomass fired food dehydrators is a more efficient and convenient option for the drying process. They are designed optimizing parameters like the moisture removal rate, drying rate, thermal efficiency, and heat transfer efficiency to obtain optimum results while preserving the physical and nutritional qualities of the food products. Biomass pellets, saw dust, wood pellets can be used as the heat source in these dehydrators and the capacity can be as high as 500 kg/hr.

Objective: Establishing Micro industries in rural level and value addition of agricultural products

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Awareness through demonstration sites
- 2. Financial support systems (grants /soft loan facilities)

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Small scale milk can coolers

Background: Small scale dairy farming is a common livelihood among the farmer community in Eastern Province of Sri Lanka, housing 22,400 cattle farmers. The milk produced is transported to collecting centres without any form of cooling. The hygiene and quality of the milk largely depends on how fast the collecting and transporting process is, because fresh milk tends to exceed the maximum bacterial count decided by food safety laws in about 2-5 hours when left in the open under the warm climatic conditions of Sri Lanka. A cow produces around 10 litres of milk in the morning, and 6 litres in the evening. Due to lack of facilities farmers have stopped collecting the evening milk causing additional on-farm losses.

Small scale on-farm milk cooling systems with insulated milk cans are being used worldwide as an immediate solution to these issues. They are designed with a commercially available DC refrigerator and an ice maker with insulated cylindrical cans to store milk. Local manufacturing is done by Milco Sri Lanka making it possible to purchase at affordable prices. The cooling systems can also be coupled with independent solar units, but in long term aspects a grid connected system will be more convenient to use, while using a solar roof top system to compensate the energy use.

Objective: Optimizing the yield and encouraging maximum milk production locally

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Enhancing technology availability in the market
- 2. Introducing suitable financial assistance model/ easy payment modes

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Biogas Systems-Large Units

Background: Biogas technology has been in existence since early 1970's in Sri Lanka, but has not become popular compared to other RE technologies such as solar energy. Biogas application is seen mostly limited to lighting, cooking and heating in domestic level and small-scale production of bio fertilizer in the agroindustry. Several studies including the UNDP Energy NAMA project have been performed over time to identify the issues related to backfiring of biogas application. These studies have conveyed that the bio degradation process itself and the routine maintenance practices required to function the system smoothly have been largely disregarded when promoting the technology within farmer communities. Hence lack of knowledge and preparedness causes efficiency drop in the biogas systems and raise dissatisfaction among its users. There are no proper regulations or policies related to biogas promotion and application in Sri Lanka, except for some environmental standards imposed on solid waste management and waste water treatment in swine farming. If these issues are addressed properly, large scale biogas units are a highly preferred solution for the Agro-Industry considering the clean energy production, environmental friendly organic waste management, and generation of bio fertilizer.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 3. Identifying potential implementation sites
- 4. Providing site specific solutions to overcome implementation barriers
- 5. Awareness through demonstration sites
- 6. Financial support systems (grants /soft loan facilities)

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Biomass fired hot water generators for curd making process

Background: Value added productions like buffalo curd holds an important share of small-scale dairy farming business in Sri Lanka. In most of the cases this is a rural family business or cottage industry where the know-hows are passed from generation to generation. As the first step in the curd production buffalo milk is boiled over an open fire for 20-30 minutes and then cooled to 35-40 °C. heating is obtained by burning firewood. This is a crude technique associated with several disadvantages such as the inability to control temperature and mixing of burnt ash with product.

Use of biomass fired hot water generators is an ideal solution to overcome these issues and the hygienic conditions and quality of products can be enhanced through this. This application has already been introduced to Dickoya area under the UNDP Biomass Project with proven capacity enhancement and can be developed further with sufficient financial aid.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Identifying potential implementation sites
- 2. Providing site specific solutions to overcome implementation barriers
- 3. Awareness through demonstration sites
- 4. Financial support systems (grants /soft loan facilities)

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

Solar thermal powered fish dryers

Background: Raw fish meat contains around 80% moisture making it a highly perishable food. Drying is an important technique used in the fisheries sector to preserve fish increasing the shelf life and storage period, preventing wastage of excess harvest, and maintaining a consistent a supply to the market. Open sun drying is the most attractive and prevalent method used, as it is very effective in tropical regions such as Sri Lanka, is easy to handle, and does not require much technical or financial capacity. But it also has its disadvantages like requiring a large open space exposed to direct sunlight, slow and non-uniform drying, and low hygiene due to fish being exposed to dust, bird and animal attacks. Solar thermal powered fish dryers are a simple and preferable alternative to open sun drying, that make use of solar energy with more advanced and efficient technology. It is more suitable for drying small fish and the only disadvantage compared to other drying methods is not being able to use when there is no sun light.

Objective: Popularization of commercially viable technologies through establishment of demonstration sites

Main Targets: To be set by the executing party

Recommended Actions

It is recommended to build actions to deliver targets through the following strategies.

- 1. Enhancing technology availability in the market
- 2. Awareness through demonstration sites

Stakeholders

As identified by the executing party

Responsibility

To be assigned

Estimated Budget – LKRM

									KPIs				Fun	ding S	ources		
No	Action	Targets	Strategy	Responsibility	Supportive agencies	Budget - MLKR	2022	2023	2024	2025	2026	Self Funded	Consolidated Fund	Donor Funds	CSR Funds	Sponsorships	MRV
	ď.	Introduction of 250 solar water pumps	Financial assistance maximum up to 25% of the total cost	Ministry of Agriculture EP													
1	gramme		Coordinate with local banks and arrange soft loans														
	ve prog		Training programs on effective use of solar pumps		SLSEA												
2	ps supportive programme	Introduction of 250 electrically driven water pumps															
3	Solar water pumps	Introduction of 500 solar roof top systems															
4	Solar wa	Introduction of 200 solar home systems for inland fishing boats															

CHAPTER 8: IMPACT ASSESMENT OF PROPOSED ACTIONS

Nos.	Technology	Capacity of the proposed intervention	Minimum land area required for introduction of new technology- Acres	Cost of a unit - LKR	Base case	Existing Energy Use	Units	RE technology	Specific base case energy cost - LKR/kWh, Liter	Simple pay back period - years	Potential sites for new intervention	Emision factors kg of CO2/kg of fuel	CO2 saving potential - tons/vear
1	Electricity driven water pumps + solar rooftop system (5kW)	5kW	2	1,150,000.00	Electricity	0,600	kWh/year		35.00	5.0	100,000	0.722	476,520
2	Solar water pumps	2kW	2	500,000.00	Diesel	840	lires/year	Sola pumps	111.00	5.4	3,000	3.17	8,000
3	Sprayer		2	12,500.00	Petrol	48	lires/year	electricity	127.00	2.00	100,000	3.13	15,000
4	Sola home system	3 lamps	any	20,000.00	Kerosene	150	lires/year	Solar home system	80.00	1.7	2,000	3.15	950
5	Solar rooftop systems for shrimp farming	12 kW	1	2,100,000.00	Electricity	10,800	kWh/year		22.00	9.0	2000	0.722	15,600
6	Biomass fired hot water heaters	150 liters /hr	•	850,000	LPG			Biomass		2.2	50		850
7	Temperature and RH controlled food storage systems					I						l	
8	Biomass fired food dehydrators												
9	Small scale milk		technologies and liv	estoc	k sect	or out	puts.	Since t	here is	not a b	ase cas		
10	Solar thermal powerd ih dryers	technologies, potential reduction of CO2 emision is not arrised.											
11	Solar powered battery operated insects control systems												

CHAPTER 9: IMPLEMENTATION ARRANGEMENT OF THE ACTION PLAN

The Ministry of Agriculture, Fisheries unit, Department of Irrigation, Department of Agriculture and Department of Animal Production will be implementing this green energy action plan individually and the Chief Secretary's office will be executing it. A results based action plan is proposed under this analysis report and based on the availability of resources and the budget, the annual targets need to be finalised. A common template is proposed in chapter 07 and it will help to monitor the implementations of proposed actions precisely.

9.1 IMPLEMENTATION ARRANGEMENT OF THE GREEN ENERGY ACTION PLAN

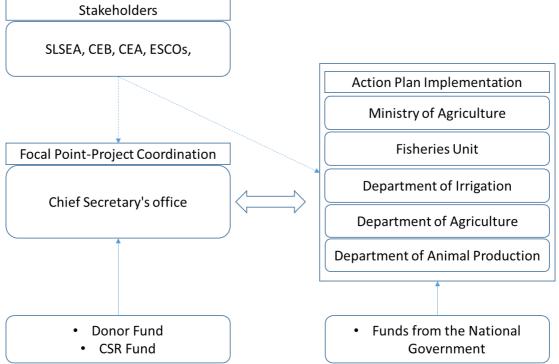


Fig 9.1: Implementation arrangement of the action plan

9.1.1 GOVERNING FRAMEWORK

Coordination, monitoring and implementation assistance will be provided by the Focal Point-Project oCordination established in the Chief Secretary's office, Northern Province and the implementation of the action plan will be done individually by the relevent Ministries and the departments.

Focal Point-Project Coordination will be specifically responsible for:

Liaising with the donor agencies, CSR funding sources and channeling the fund for implementing partners.

Coordination with relevant institutions for obtaining technical assistance in implementation of the action plan.

Monitoring the progress and ensuring smooth operation.

Implementing partners will be specifically responsible for:

Liaising with the Financial Commission, and line Ministries for budgeting requirement.

Development of annual action plan based on the available resources and Government directives.

Implementation of the action plan and reporting the progress.

9.1.2 STEERING COMMITTEE FOR IMPLEMENTATION OF THE ACTION PLAN (SC)

Chairman Chief Secretary, Northern Province

Secretary Secratery or nominee

Responsibility Guidance & direction for enhancing the overall productivity

Meetings Once in 4 months

A Steering Committee (SC) for implementation of the green energy action plan will be officially appointed by the chief secretary. The SC will include members representing the Agriculture, Fisheries and Livestock sector relevant institutions. The heads of participating public sector institutions will be invited to SC meetings as necessary. The Chief Secretary of the Northern Province or his/her nominee will act as the Secretary and convener of the SC. The SC will meet as often as required, but will meet at least once in every 4 months.

9.1.3 FINANCIAL MANAGEMENT

Finances available at donors and CSR funds will be channeled through the Focal Point- Project Coordination and the implementation progress will be monitored. Government funds will be directly channeled to the relevent implementation institutions following the existing prevaling mechanisms.

REFERENCES

- 1) https://www.cbsl.gov.lk/en/statistics/statistical-tables/external-sector
- 2) Latest NDC report of Sri Lanka https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Sri%20Lanka%20First/NDCs%20of%20Sri%20Lanka-2021.pdf
- 3) Solar pre-feasibility report https://isolaralliance.org/uploads/docs/f6f7c1f00b8b73a927b126b7994dd7.pdf
- 4) file:///C:/Users/User/Downloads/MonitoringandAssessmentoftheoffshorefishery.pdf
- 5) http://www.statistics.gov.lk/Agriculture/StaticalInformation/rubb7
- 6) General Report, Economic Census 2013/14 Agricultural Activities Sri Lanka-Department of Census and Statistics (ISBN-978-955-702-100-3)
- 7) LIVESTOCK STATISTICAL BULLETIN 2019, Department of Animal Production and Health Peradeniya Sri Lanka
- 8) Fisheries Statistics 2020, Ministry of Fisheries
- 9) http://www.energy.gov.lk/images/energy-balance-2019-lq.pdf

ANNEXURES

ANNEX 1: CONTACT DETAILS OF WORKING COMMITTEE- FOCAL POINTS (NP)

Formulation of provincial energy plans for the agriculture, livestock and fisheries sector

Provincial Focal Point -Agriculture Sector

#	District	Name of the representative	Designation	Phone Number	Email
1	Northern Province	Mr S. Sivakumar	PD	0773868581	sivakumar.sivapatham @gmail.com
2	Jaffna	Mrs. Srirangan	DPDA	0773051363	srianchana@gmail.com
3	Kilinochchi	Mr. P Atputhachandran	DPDA	0773222441	atputhanp@gmail.com
4	Mannar	Mr K.M.A. Sukoor	DPDA	0779804034	sukoorddamn@gmail.com
5	Mullaitivu	Mrs. S. Saseelan	DPDA	0776172465	yamsasi1729@yahoo.com
6	Vavuniya	Mrs. A Velsivananthan	DPDA	0776890548	Arunthathi.v@gmail.com

Provincial working committee -Agriculture Sector

#	District	Name of the representative	Designation	Phone Number	Email
1	Northern Province	Mrs. J.Latha	ADA	0772912939	janakalatha@gmail.com
2	Jaffna	Mrs. V.Nadanamalar	ADA	0770358202	vijayannadani@gmail.com
3	Kilinochchi	Mrs. R.Malani	SMO	0773640331	kilinochchidda@gmail.com
4	Mannar	Mr. S.F.C.Uthayachandran	ADA	0763049012	sfcuthayachandran@gmail.com
5	Mullaitivu	Mrs. K.Kema	SMO	0777351955	Kemarasa26@gmail.com
6	Vavuniya	Mr K.Matnanraj Kulas	ADA	0779644472	Mathanarajkulas18@gmail.com

Provincial Focal Point -Animal Production and Health

#	District	Name of the representative	Designation	Phone Number	Email
1	Jaffna	Dr. P.Kiriyakala	Veterinary Surgeon	0771035183	Pmahadevan5@gmail.com
2	Kilinochchi	Dr. S.Kiriyakala	DD Kilinochchi	0770755225	adkilinochchi@gmail.com
3	Mannar	Dr. S.C.Vimalakumar	DD Mannar	0718475500	adaphmn@gmail.com
4	Mullaitivu	Dr. S.Thayaparan	Veterinary Surgeon	0773126389	Thayavet2008@gmail.com
5	Vavuniya	Dr. K.Yogarajah	DD Vavuniya	0774457417	npaphvav@gmail.com

Provincial Working Committee -Animal Production and Health

#	District	Name of the representative	Designation	Phone Number	Email
1	Jaffna	Dr. P.Mahadewan	Veterinary Surgeon	0771035183	Pmahadevan5@gmail.com
2	Kilinochchi	Dr. S.Kiriyakala	DD Kilinochchi	0770755225	adkilinochchi@gmail.com
3	Mannar	Dr. S.C.Vimalakumar	DD Mannar	0718475500	adaphmn@gmail.com
4	Mullaitivu	Dr. S.Thayaparan	Veterinary Surgeon	0773126389	Thayavet2008@gmail.com
5	Vavuniya	Dr. K.Yogarajah	DD Vavuniya	0774457417	npaphvav@gmail.com

Provincial Focal Point -Fisheries Sector

	Ovincial Four Fibricites sector								
	Northern Province	Mr. S.Ketheswaran	Director	0770224760					
#	District	Name of the representative	Designation	Phone Number	Email				
1	Jaffna	Mr. S.Vithiyatharan	DO	0779911842	sviththi@gmail.com				
2	Kilinochchi	Mr. T.Thyaparan	ACDO	0776247944	thangrasathayaparan@gmail.com				
3	Mannar	Mr. N.Lageepan	ACDO	0777366870	Lageepan0417@gmail.com				
4	Mullaitivu	Mr. K.Chinthuja	ACDO	0778446629	kchinthujan@gmail.com				
5	Vavuniya	Mr. N.Vishnurasa	ACDO	0775414242	nadarasavishnurasa@gmail.com				

Provincial Working Committee -Fisheries Sector

	Northern Province	Mr. S.Ketheswaran	Director	0770224760	
#	District	Name of the representative	Designation	Phone Number	Email
1	Jaffna	Miss. S.Shajiny	ACDO	0775288842	shujasaginy@gmail.com
2	Kilinochchi	Mr. N.Gowsikan	ACDO	0776247944	gowsigowsi@gmail.com
3	Mannar	Mr. K.Jeyanesan	ACDO	0777552213	jeyanesan@gmail.com
4	Mullaitivu	Mr. N.Lageepan	ACDO	077366870	Lageepan0417@gmail.com
5	Vavuniya	Mr. K.Chinthuja	ACDO	0778446629	kchinthujan@gmail.com

Provincial Focal Point and Working Committee -Irrigation

#	District	Name of the representative	Designation	Phone Number	Email
1	Jaffna	Eng. K.Sujeewan	Irrigation Engineer	0778249780	P_irrigationjaffna@yahoo.com
2	Kilinochchi	Eng. I.Sunoj	Irrigation Engineer	0770818601	ddikoc@gmail.com
3	Mullaitivu	Eng. C.Amirthaseelan	Senior Irrigation Engineer	0771615252	Irr.mul.ddi@gmail.com
4	Vavuniya	Eng. T.Rajagobu	Deputy Director of Irrigation	0773172093	npvavddi@yahoo.com
5	Mannar	Eng. R.Tharakan	Irrigation Engineer	0770764499	murunkanie@yahoo.com